MIT OpenCourseWare
http://ocw.mit.edu

18.085 Computational Science and Engineering I

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
18.085 Quiz 2 November 3, 2006 Professor Strang

Your PRINTED name is: SOLUTIONS \quad Grading $\begin{aligned} & 1 \\ & 2\end{aligned}$

1) (25 pts.) This network (square grid) has 12 edges and 9 nodes.

(a) Do not write the incidence matrix! Do not give me a MATLAB code! Just tell me:
(1) How many independent columns in A ? 8
(2) How many independent solutions to $A^{\mathrm{T}} y=0$? $\quad 12-8=4$
(3) What is row 5 (coming from node 5) of $A^{\mathrm{T}} A$?

I do want the whole of row $5 . \quad\left[\begin{array}{lllllllll}\mathbf{0} & \mathbf{- 1} & \mathbf{0} & \mathbf{- 1} & \mathbf{4} & \mathbf{- 1} & \mathbf{0} & \mathbf{- 1} & \mathbf{0}\end{array}\right]$
(b) Suppose the node 2 has voltage $u_{2}=1$, and node 8 has voltage $u_{8}=0$ (ground). All edges have the same conductance c. On the second picture write all of the other voltages u_{1} to u_{9}. Check equation 5 of $A^{\mathrm{T}} A u=0$ (at the middle node).

$$
-\frac{1}{2}-\frac{1}{2}+4\left(\frac{1}{2}\right)-1-0=0
$$

2) (25 pts.) Suppose that square grid becomes a plane truss (usual pin joints at the 9 nodes). Nodes 2 and 8 now have supports so $u_{2}^{\mathrm{H}}=u_{2}^{\mathrm{V}}=u_{8}^{\mathrm{H}}=u_{8}^{\mathrm{V}}=0$.

Any numbering of edges
(a) Think about the strain-displacement matrix A. Are there any mechanisms that solve $A u=0$? If there are, tell me carefully how many and draw a complete set. I believe 3 .

(b) Suppose now that all 8 of the outside nodes are fixed. Only node 5 is free to move. There are forces f_{5}^{H} and f_{5}^{V} on that node. The bars connected to it (North East South West) have constants $c_{N} c_{E} c_{S} c_{W}$. What is the (reduced) matrix A for this truss on the right? What is the reduced matrix $A^{\mathrm{T}} C A$? What are the displacements u_{5}^{H} and u_{5}^{V} ?
$A=\left[\begin{array}{rr}1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1\end{array}\right]$
$\begin{aligned} & \text { (any row } \\ & \text { order is OK) }\end{aligned} \quad A^{\mathrm{T}} C A=\left[\begin{array}{cc}c_{E}+c_{W} & 0 \\ 0 & c_{N}+c_{S}\end{array}\right] \quad \begin{aligned} & u_{5}^{\mathrm{H}}=f_{5}^{\mathrm{H}} /\left(c_{E}+c_{W}\right) \\ & u_{5}^{\mathrm{V}}=f_{5}^{\mathrm{V}} /\left(c_{N}+c_{S}\right)\end{aligned}$

For 1 point, is that truss (fixed at 8 nodes) statically determinate or indeterminate? indeterminate
3) (25 pts.) This question is about the velocity field $v(x, y)=(0, x)=w(x, y)$.
(a) Check that $\operatorname{div} w=0$ and find a stream function $s(x, y)$. Draw the streamlines in the $x y$ plane and show some velocity vectors.
(b) Is this shear flow a gradient field $(v=\operatorname{grad} u)$ or is there rotation? If you believe u exists, find it. If you believe there is rotation, explain how this is possible with the streamlines you drew in part (a).

Solution.

(a) $\operatorname{div}(0, x)=0+0=0$

$$
0=\frac{\partial s}{\partial y} \quad x=-\frac{\partial s}{\partial x} \quad s=-\frac{1}{2} x^{2}(+C)
$$

$x=$ constant are vertical streamlines.

(b) Not a gradient field because $\frac{\partial v_{1}}{\partial y}=0 \quad \frac{\partial v_{2}}{\partial x}=1$.

Possible explanation for vorticity (rotation) $\frac{\partial v_{2}}{\partial x}-\frac{\partial v_{1}}{\partial y}=1$.
Right side going faster than left side produces rotation.
4) (25 pts.) Suppose I use linear finite elements (hat functions $\phi(x)=$ trial functions $V(x)$). The equation has $c(x)=1+x$ and a point load:

$$
\text { Fixed-free } \quad-\frac{d}{d x}\left((1+x) \frac{d u}{d x}\right)=\delta\left(x-\frac{1}{2}\right) \quad \begin{aligned}
& \text { with } \quad u(0)=0 \\
& \text { and } u^{\prime}(1)=0 .
\end{aligned}
$$

Take $h=1 / 3$ with two hats and a half-hat as in the notes.
(a) On the middle interval from $1 / 3$ to $2 / 3, U(x)$ goes linearly from U_{1} to U_{2}. Compute

$$
\int_{1 / 3}^{2 / 3} c(x)\left(U^{\prime}(x)\right)^{2} d x \quad \text { and } \quad \int_{1 / 3}^{2 / 3} \delta\left(x-\frac{1}{2}\right) U(x) d x
$$

Write those answers as

$$
\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{rr}
4.5 & -4.5 \\
-4.5 & 4.5
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \text { and }\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
$$

You have found the 2 by 2 "element stiffness matrix" and the 2 by 1 "element load vector."
(b) On the first and third intervals, similar integrations give

$$
\begin{gathered}
{\left[U_{1}\right][\mathbf{3 . 5}]\left[U_{1}\right]}
\end{gathered} \text { and }\left[U_{1}\right][0] ; ~\left[\begin{array}{rr}
5.5 & -5.5 \\
-5.5 & 5.5
\end{array}\right]\left[\begin{array}{l}
U_{2} \\
U_{2}
\end{array}\right] \text { and }\left[\begin{array}{ll}
U_{2} & U_{3}
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Assuming your calculations and mine are correct, what would be the overall finite element equation $K U=F$? (Not to solve)

Solution.
(a)

$$
\begin{aligned}
\int_{1 / 3}^{2 / 3}(1+x)\left(\frac{U_{2}-U_{1}}{1 / 3}\right)^{2} d x & =\left.\frac{(1+x)^{2}}{2}\right|_{1 / 3} ^{2 / 3} 9\left(U_{2}-U_{1}\right)^{2} \\
& =\frac{\left(\frac{5}{3}\right)^{2}-\left(\frac{4}{3}\right)^{2}}{2} 9\left(U_{2}-U_{1}\right)^{2} \\
& =\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{rr}
4.5 & -4.5 \\
-4.5 & 4.5
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \\
\int_{1 / 3}^{2 / 3} \delta\left(x-\frac{1}{2}\right) u(x) d x & =U\left(\frac{1}{2}\right) \quad\left(\mathrm{NOT} \int U(x) d x!!\right) \\
& =\frac{1}{2}\left(U_{1}+U_{2}\right) \quad(\text { halfway up }) \\
& =\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{0}^{1 / 3}(1+x)\left(\frac{U_{1}}{1 / 3}\right)^{2}=\left.\frac{(1+x)^{2}}{2} 9 U_{1}^{2}\right|_{0} ^{1 / 3}=3.5 U_{1}^{2} \\
& K=\left[\begin{array}{rrr}
8 & -4.5 & 0 \\
-4.5 & 10 & -5.5 \\
0 & -5.5 & 5.5
\end{array}\right] \quad F=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0
\end{array}\right]
\end{aligned}
$$

