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PROFESSOR: OK. Ready for today's discussion, which I'm quite sort of happy about. I hadn't really

seen this coming. First we haven't said anything about how do you estimate the

error in a problem. Because we're often taking continuous problem coming from

differential equations typically and discretizing it, and solving it -- solving the discrete

problem. And we want some idea. It's not just some math question of course,

because, you know, in engineering design or analysis an idea of what the error is

critical. And secondly, it gives us an idea of where we can improve it. You know, if

we see what's controlling the error then we know what's going on. So I'm speaking

now about steady state problems. We discussed error for initial value problems, and

we realize there that the error depended on usually finite differences. So the error

we knew we could figure out locally from find a difference that we chose, you know,

we chose second order accurate differences frequently, but we could've moved up

to a fourth. And then the other ingredient you need is stability to know that those

local errors don't explode as time goes for. OK. So we had something to say about

error and accuracy at that time about that topic.

And now I'm realizing that many of our other topic fall in this category. And I put

three of the topics here. In the idea sort of where the underlying discretization is a

projection. It's somehow a projection between a true solution and the discrete

computed solution. Somehow the discrete computed solution is in some finite

dimensional family where we can compute, and we're projecting into that family.

And here are three examples. So you'll see that actually what I'm talking about is

central to the whole semester.

Well finite elements actually appeared more in 18085. So I'll have to recap a little bit

there. But they would be the natural tool for solving that list of continuous problems

from calculus variations that I've talked about last time, minimizing some energy,

where the energy is a typically an integral and were in the continuous case. And
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what's the infinite element central idea? It is choose these guys, choose some basis

function, and look at their combinations. Maybe choose n basis functions. I guess I

better get a chalk or it's going to be a short lecture. OK. So we have a continuous

problem, continuous ODE, ordinary differential equation or a partial differential

equation with boundary conditions as always that we want to make discrete. And the

point is I am not making a discrete by finite differences. This is a different route from

finite differences.

And in Laplace's equation and these, and many, many problems this is the

preferred route. And finite elements are a particular choice of these guys. The

Galerkin idea, so I'll use his name, for the overall idea is choose these, and look for

the best combination, and we have to say what does best mean. Well best is going

to mean in our minimization problems, it will be the combination that gives the

minimum. The combination of these n file functions. Now the exact solution is not

going to be in that little n dimensional space. Those functions for finite elements

might be piecewise linear, or if you want to upgrade it they might be piecewise

parabolas, piecewise cubics, whatever. It was the brilliant finite element idea to

choose simple functions. And then you could take n quite large, but you're still not

getting the exact solution of course, and it's to estimate how far off you are. But then

also in multigrid, what was the idea in multigrid? We started with a system at level h.

We started with some problem Ah uh equal fh, which was a big system.

If we did ordinary Jacobi or Gauss-Seidel that was too slow, a multigrid idea was

project, there's that magic word project, onto to a course grid, where the problem is

smaller. Here we started with a continuous problem, and we got it down to size n.

Here we start with a discrete problem and we cut its size in 1/2 or in 1/4 or an 1/8

again. So projection is producing a smaller problem, and the question is what are

you losing? And actually conjugate gradients. You remember these spaces? The

spaces span the combinations of b ab a squared b and so on. That was the

computationally convenient of sub space to project onto. And so we've got important

examples.

Now what I realized, I'm pleased about this, is that they all fit. So here's my problem,
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what's the error? So I'm going to u star for the correct answer. This is the true. And

I'm going to use U star, capital U star for the approximate, the one that we get by

any of those key ideas in numerical analysis. And I'm trying to estimate the

difference. OK. And I just put up here that I'm dealing with positive definite

problems. In fact, the matrix K the symmetric positive definite problem you have

often has this A transposed CA form, or in the continuous case it might K might

stand for the A transpose might be minus the derivative, the C might be a variable

or constant of the physical coefficient; A would be d by the x, that would be the K

thing. The equation I want to get it Ku equal f. That's the strong form. Strong form

will be Ku equal f.

But the whole point of last lecture and this one is that we don't get to the strong

form. This projection starts with a minimum problem, and gets to a weak form. And

it's the minimum problem or the weak form that we want to think about not the

strong form.

OK. Now. Up there I wrote an identity. If you just multiply that right hand side out, I

believe it comes out right. And it's very valuable for our purposes here. OK. So

what's on the left side? This is the quantity that we're minimize, we're minimizing

this. And by just manipulation, we wrote it this way. So now I can identify what u

star. So I'm going to minimize this over all u. That certainly looks like a discrete

problem right? So think of u as a vector, f as a vector, K as a positive definite

symmetric matrix. Just think about that. But I want it to apply very much to the

continuous case too, to differential equations. But here's a point then, what's the

winner? You can't immediately see, well maybe you can, somehow see that when I

set the derivative of this thing to 0, I get that equation. You can kind of believe it,

even if it's vectors and matrices.

But here you can see right away that how do I make this small? This is a constant

here. That's just a constant, so it doesn't depend on u. So what choice of u makes

that term small? Well of course it's the choice of u is the one that makes this thing 0,

because that's a positive definite matrix. No way is anything is going to get negative

here. This is a something transposed K something. You remember what positive

3



definite means. It means that x transpose Kx for every vector x, there's never a

negative. So the best we could do would be to bring this to 0, and of course to bring

it to 0 is to bring the x to 0, to bring this thing to 0, so this thing should be 0. So u

minus K in verse f should be 0. And of course that leads us back to the same

conclusion that we reached from this the strong form. OK. Good.

So that an identity, but now I want to use this identity to answer the question about

what if I minimize only on a sub space? That's the problem for today. So that's a

question. Maybe I'll write it on this fresh board. Now I minimize only over some sub

space. Now can I can I use capital U? I used little u for in here, allowing it to be any

vector, and I found a winner. And let me give the winner a name, u star. It's a real

headache in this subject of just the notation. What should we call the winner? So

sometimes I call it u hap, that was a familiar notation in estimation theory of these

squares. Today I'm going to call it u star So it's u star is the winner, small u star.

Let me take time out, one minute time out. I mean optimize is about the problem of

minimizing some function f of x. I'm just going to take one minute on the problems of

an author. What do you call the winning function, winning vector, or the winning x? I

mean it could be just a scalar, we could be doing just calculus. What do I call the x

that gives the minimum? You may have a favorite, you can't call it x right? I mean

Because that's just confusing it with the variable x. So I'm saying well you could call

it x hat, you could call it x star, you call it capital X. So I'll just write a few of those

down - x star would be a possibility, x hat would be a possibility, x minimizing would

be a possibility. I'm doing this just because I want to write down the thing that you

often see, which is argmin of F of x. And I write that down just so if you ever see it,

you know what the heck it means. It has the same meaning as any of these. I am

not a big fan of that. But what does this mean? It means the argument that gives the

minimum of F of x, right. Argument is a fancy word for the variable in the function.

So this the argument that gives the minimum of F of x, and that's what we're looking

for to name. But I'm sure not happy about writing that name. So here it goes, it

disappears. But you'll see it, and now you now want it means. OK.

So this is now the central issue here. I want to minimize my same guy 1/2 u
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transpose Ku minus u transpose f, or which is exactly the same, that same right

hand side because the two are equal. I want to minimize over some capital U's not

all U's. if I minimize over all U's, then I get the exact answer. But the idea of all these

numerical methods is minimize over some finite dimensional, smaller dimensional,

sub space of trial functions. I don't know. I'll say minimize over U in the trial space,

just to write it out in words. OK. Well now I guess my name for the winner in the trial

space is going to be U star. So the winner in the trial space will be U star. So that's

my finite element solution, my conjugate gradient solution, my multigrid solution.

All these problems are reducing to a smaller trial space, and picking the winner

there, computing the winner there. And then the question of today is how far apart

are the two? OK. And now there's this little formula that gives us a good idea. This

little formula gives us a handle on that. So now can I look at this formula? Maybe

maybe I'll copy the formula here. This is the minimum over all these trial, these

guys, of 1/2 -- oh but I'm going to write it that way -- 1/2U, that's my trial guy, minus

KN verse f, that's my U star now. Am I OK to give that name to KN verse f? Yeah, I

already gave it I guess. U star is Kn verse f. So that's cool. Shorter. IT's shorter and

better. K, oh it's transposed U minus u star plus a constant. So I can forget that. I

can forget this constant part. That's not important to us. So this simple identity then

has expressed our key discretization approach here as finding the U, and we're

going to call it U star, that's nearest to u star. That's the great fact that makes the

whole subject pleasant. OK. So the winner U star is then, by this since I'm

minimizing that expression, it's certainly the nearest in the K norm. It's the nearest

waited by K, somehow that K is important. That K is reflecting the problem we're

solving. That K is the energy or whatever to U star. OK. That's the great conclusion.

You could say that's the fundamental theorem of this projection, error estimates and

stuff. So do you see that we got to that? The thing that minimizes makes this as

small as we can. So nearest is simply a translation of what that says. Pick the capital

U that's closest to u star. OK.

Now how does that help? That helps because I want to estimate the difference. So

now I estimate the difference of U star minus u star. So I'm trying to get a handle on

how different those are. How So let me take in this case of, say, Laplace's equation
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or the 1D case. again I'm speaking steady state boundary value problem. So U star

is the best combination of these trial function, capital U, and little u star is the exact

solution. Let me draw a picture. So suppose I'm in 1D, 0 to one. OK. Yeah, let me

pick that model problem again. So minus the derivative of cdu dx is f of x with

boundary conditions. And I guess if I'm consistent now I should write u star,

because it's the winning solution. And suppose the boundary conditions are 0 at

both ends, and it does something. OK. So that's u star. OK. So that's a continuous

case, which I'm drawing a picture to represent what the solution might look like. OK.

Now what about this finite element stuff? Suppose the phi's are linear pieces. I'm

going to do linear finite element method. Then any combination of these linear guys

is going to be piecewise linear, there's going to be a mesh. You know this set up. It

might look like that, and have a value there. It might have a value there, might have

a value there, there, there, and there. OK. And let's suppose this is the winning,

doesn't look like a winner to me because I think it could probably do better, but

capital U star. But remember that we're measuring what's the K in norm stuff. I'm

measuring the difference between these two not point-wise, which would be of

course pleasant to say, OK, the distance is just, you know, maybe the maximum

distance or the mean square error. That would be quite pleasant. But here the

measure of distance involves this K, which comes with the problem. So by distance

here I mean the distance between U star and u star. Can I write it with a capital K

there to indicate that's the K norm? That's the norm in which this is small, as small

as can be made. And what is the K norm for this particular problem? Well it's the

integral, and involves the c, and it involves the U star prime minus the u star prime

square dx, integrated from 0 to 1.

I'm just picking this example problem so that you get some idea how we're

measuring the error. It's the natural measure for the error. It's the energy measure.

We're measuring error and energy. This is an energy expression. This thing, you

know, represents some kind of elastic bar or something, so we're measuring the

internal energy here. And notice in particular, maybe the most important point is not

the c of x, which just comes along for the ride, our measure of the error is in the
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derivative. We're measuring error and slopes, because those are the stresses in the

bar, and that's where energy comes from, internal strain energy. OK. So in other

words, I have this function u star, this curve guy, and I have this function, which I'm

thanking to be the winner. And again it's the winner in the sense that it minimizes

this. This is the minimum. This is the expression that we have some handle on,

because we know that U star, capital U star, will make that as small as it can. It does

not make small the point-wise error. It might try accidentally we hope it does of

course, get point-wise error right. But what it is constructed to get right is energy

error. Make that small. OK.

So now the question is how do we estimate the difference? OK. So now here's this

key point, how do we estimate the difference. Again we're looking at the error. By

the way I should of, maybe I did, put a square there. That was the norm squared.

You realize why I don't want a big square root sign, it's just clumsy. So I'm looking at

the square there. OK. So now how do you estimate the thing knowing that this

piecewise linear that came out of some finite element calculation or some giant

code, is best possible? Well here's the idea. Look at a convenient candidate that

might not be the winner. Let me put, because this was as small as possible, this is

less than or equal to U minus u star, it's always in the correct measure, for every

trial function U. This just says what I've said now three ways, that u star's the best in

the K norm.

Now I to get some bound on this, I can take any u, I can take any u an estimate its

difference from u star, and that will give me a bound. In other words, I don't know

what this particular guy happened to be. Let me just jump to the key idea. I know

that that one is better than for example, I'm just going to pick one piecewise linear

trial function that's quite convenient. Pick the one that interpolates the exact one.

OK. Now for some reason, known only to finite elements, that wasn't the finite

element winner. That wasn't u star, that was another u. For example, so like I'll put it

in blue here, for example take u to be the function that interpolates u star, little u

star the function that I've drawn here. Since our question is how close can we get to

the curve guy by piecewise linear, well one choice is how close does the interpolate

come. It doesn't necessarily come the closest. Probably not. But it's in the right
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ballpark.

So now I just ask the question, and let me draw the same picture again. I have a

function and I interpolate it by piecewise linear guys. So piecewise linear function

there. And so this is a comparison between the u star and its interpolate, which is

my candidate U that I'm recommending as a trial. And now it's a pure approximation

question. You see we no longer have to know all about finite elements, we don't

have to know anything about finite elements. We just asking the question if you give

me a function, and you compare it with the piecewise linear interpolate, how far

apart are they? How far apart? And let me call the step size h, and of course could

be an unequal steps. It could be an structured mesh. Everything works here. Now

we come to just a basic sort of understanding of calculus. How close does a curve

come from the cord? Really that's what it's come down to. How close is curve

function from a cord? I can even blow that up.

So here I have some curve going up, and compare that with the cord. And this

distance here is h. So I'm just looking for something like is the difference of order h,

is it of order h square, is it of order e to the h. What the distance between the two?

And you could imagine it's a parabola, because I'm focusing down on just a little

piece. I take a little parabola, a little h piece of it, and I compare it with a cord, what's

the distance between the two? That distance there. Well your eye probably tells you

that it's smaller than h, because h was this big, and I'm only looking this big

vertically. So this distance, that distance there maximum distance, is of order h

square. But that's not the question. The question is how far apart are these, how far

apart of the these in measure? How far apart are the slopes? Because the K a norm

is dealing with the slopes, and not the function itself. So more important than the

distance is the error in slope, and would you want to guess what that's like? What's

your guess on that, the error in the slope?

Now the slopes are not going to be as good as the function as always. Slopes are

one derivative higher, you loose something, you get order h. So that's the error.

Let's see, I hope I'm right here. Yeah. I think that's right. There I was speaking

pointwise, and then I've got to integrate it over the whole interval here, a unit

8



interval. So if I square it of course I'm going to get h square, and then if I integrated

it, I still have h square, and then when I take the square root I have h. So h is the

right quantity. If I can put down here what our conclusion was from this method by

taking capital U to be this convenient, not the only choice, but a convenient choice

just to get an idea what the error might be. And then the error from the actual U star

is got to be better, our estimate is order of h for this particular application. This

particular application. That's the error in energy norm in the slopes. So the theory of

finite elements would go ahead to try to show that the error in the distance between

them, into displacement you could say, is h square.

But that's not so easy, and I won't be able to do it here. Why is it not easy to say

that the error in the displacement is of order h square? It's certainly true for this

interpolate, right. There's no question that the interpolate is you could easily see as

h square, order h square away from the function. But the point is that capital U star

was not the best in staying near the function, it was only the best in staying near the

slope. So I don't have this crutch to lean on here. This is in the K norm, and not in

the mean square norm. It's in a norm that deals with slope, but not with just plain

displacement distance. OK. Maybe that's made the point. And this is the part of

finite element theory just to do that. OK.

If I could take a minute about notation, because the notation that I've used here of K

is really a matrix notation. You don't truly see it in finite element papers. For me it's

clear, right. I mean that identity was quite clear from vectors and matrices. But with

finite elements I'm really dealing with functions. So it's not fair to use matrix notation,

you know, when it's integrals, and derivatives, and functions that are involve here.

You know, these are functions, and the actual solution is a function.

So I all I want to do is mention the notation that you now see say in 6920. The

engineering course that would be, you know, quite related to this one of finite

elements and Galerkin and all sorts of stuff, that we'll touch in the remaining weeks.

How would they write the minimization problem? The original problem now, going

back to the original problem, and just saying wait a minute we didn't really have a

good notation for it. The thing I'm looking for is like this. This is the kind of thing that
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I want, c of x u prime square dx. Well it might also have a first order term a d of x, u

square of x, it could have that. It could have second derivatives. It could be in two

variables. For Laplace we had minimum of du dx square and du dy square dxdy,

well and we had the linear term too. I've just written the sort of the left hand side,

the quadratic term. And all I want to say is that everybody, well not everybody, but a

lot of people now would use the notation a of u,u for the quadratic term. So that a of

u,u in an engineering paper represents the internal strain energy, whether it's this,

whether it's this, a combination. It somehow suggest to us it's quadratic. And there's

a linear term, and that's often written l of u. So I better put down what l of u typically

is. This l of u might be the integral of f of x u of x dx. That would be the linear term.

And I think I'd be happier to have the 1/2 there. So that really it's just a match with

this, but somehow it's a little cooler. This looks so much like vectors and matrices,

that that and that is kind of neutral. OK. So I'm just speaking about notation here,

and I could've mentioned this last time when I was speaking about all these

examples from calculus of variations. OK.

So that's the minimum problem. If you give me that notation for the minimum

problem, what's the weak form in this notation? So I'm introducing this just because

you see it elsewhere. It's it's exactly what we're doing all the time, so I just want you

to recognize it. OK. So how do we get the weak form? Can I recap how you get the

weak form? If us is the winner. Right. I'll just think of u as the winner. Then if I move

it by v, move it a little, then this expression should go up. So what happens if I move

it by v, so I'm going to compare the two. I'm going to compare that with 1/2 a of u

plus v, you know, upped a little minus l of u plus v. Maybe I'll erase min and put in

less or equal to. I'm just recapping that this should be less or equal to this one for all

v. You see it's the weak stuff? u is the winner. I'm now using u and not u star, and

I'm using v for the delta u, for the movement away from the winner, which raises the

energy. OK.

Now what do I plan to do? I plan to cancel common terms here, and see what's

going on, and find that first variation. Just what I did last time. I'm just doing it in this

new notation. So what's the point? This l of u is linear. So l of u plus v is the same

as l of u and l of v, right. If I put in u plus v there, it splits into two integrals here they
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as l of u and l of v, right. If I put in u plus v there, it splits into two integrals here they

are, so when I subtract these guys go. Now what about this one? Well just as last

time when I put in u plus v here and expanded everything, now I have something

squared. So this business here is going to be 1/2. I'll get something from the u

alone. And then I'll get two something canceling the 1/2 from u and v, that's the

cross term. And then I'll get something from the v alone. I'm dodging a couple of

bullets here just going to the main point. OK. So the main point is I'm going to

subtract, I'm going to at the differences. So the 0 ordered terms are all gone, and

it's this quantity that has to be great or equal 0, right. Because I was left with that

great or equal for all v. OK. Don't let me leave minus l of v there. OK. So that's the

thing that has to be great or equal to 0.

Now we're just going to repeat the same the discussion that we had last time with

different letters. If this is going to be great or equal 0 for all v, then I'm going to think

of small v's, in which case this term is going to be smaller than the others and won't

help. So what has to happen? What has to happen for this to be great or equal to 0

for all v? You know like we're taking the derivative in the direction of v. We're

moving in the direction of v. And this is the first order term, that's the first variation.

That's what has to be 0 for all of v. I guess I can bring it over here if you eye will

follow it. I have a of uv minus l of v, that's the sort of first order term and then the

second order term. It has to be great or equal 0 all v. And that question is so what?

What do we get out of that? Well what I'm saying is this stuff has to be 0, because v

could have either sign. So if this was positive or negative, I could switch sign if I

want to. So it has to be 0. So a of uv has to equal l of v, and that's the weak form.

That's the weak form, that's the form integral of c u prime v prime dx equals integral

of fvdx. That's the l of v, and this is the a of u and v. This is what you see in

engineering papers, when they're launching into the finite element method, and

they're planning to get some notation. That's a very familiar notation. And then the

final point is what about this term? So now we know this is 0. This is the weak form

of the equation, find u, so that this holds for all v. That's the weak form of the

equation. Oh yeah, I better not rush by it. Is This is the form finite elements come

from. It doesn't solve this equation exactly. This is the differential equation. I'm in

here. It's our Euler-Lagrange equation. The finite element method says, OK take the
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trial functions, and get it right for guys. So that give us our N equations, where this is

a continuous problem. Yeah. So the weak form is what leads you naturally to finite

elements. You take this, and you only make it true on a finite dimensional space.

OK.

And the final comment is what about this guy? Well the whole point is that we

assume positive definite, we assume stability, we've made our life easy by

guaranteeing by the fact that this is always great or equal 0. I don't even have to

think about this one. OK. Because if u and v are the same, this is a square, and that

material coefficient that better be not negative, right. OK.

Thank you for your patience to listen to that. See this notation for the same thing

that we did last time for the weak form, and you see how it pays off immediately to

give us the finite element. OK. Good. So the project ones are all there, and there's

just two or three left here. And I hope you have a super weekend, and do give a

thought to project two.
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