Last time we proved Bennett's inequality: $\mathbb{E} X=0, \mathbb{E} X^{2}=\sigma^{2},|X|<M=$ const, X_{1}, \cdots, X_{n} independent copies of X, and $t \geq 0$. Then

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) \leq \exp \left(-\frac{n \sigma^{2}}{M^{2}} \phi\left(\frac{t M}{n \sigma^{2}}\right)\right)
$$

where $\phi(x)=(1+x) \log (1+x)-x$.
If X is small, $\phi(x)=(1+x)\left(x-\frac{x^{2}}{2}+\cdots\right)-x=x+x^{2}-\frac{x^{2}}{2}-x+\cdots=\frac{x^{2}}{2}+\cdots$.
If X is large, $\phi(x) \sim x \log x$.
We can weaken the bound by decreasing $\phi(x)$. Take ${ }^{1} \phi(x)=\frac{x^{2}}{2+\frac{2}{3} x}$ to obtain Bernstein's inequality:

$$
\begin{aligned}
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq t\right) & \leq \exp \left(-\frac{n \sigma^{2}}{M^{2}}\left(\frac{\left(\frac{t M}{n \sigma^{2}}\right)^{2}}{2+\frac{2}{3} \frac{t M}{n \sigma^{2}}}\right)\right) \\
& =\exp \left(-\frac{t^{2}}{2 n \sigma^{2}+\frac{2}{3} t M}\right) \\
& =e^{-u}
\end{aligned}
$$

where $u=\frac{t^{2}}{2 n \sigma^{2}+\frac{2}{3} t M}$. Solve for t :

$$
\begin{gathered}
t^{2}-\frac{2}{3} u M t-2 n \sigma^{2} u=0 \\
t=\frac{1}{3} u M+\sqrt{\frac{u^{2} M^{2}}{9}+2 n \sigma^{2} u}
\end{gathered}
$$

Substituting,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \geq \sqrt{\frac{u^{2} M^{2}}{9}+2 n \sigma^{2} u}+\frac{u M}{3}\right) \leq e^{-u}
$$

or

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \sqrt{\frac{u^{2} M^{2}}{9}+2 n \sigma^{2} u}+\frac{u M}{3}\right) \geq 1-e^{-u}
$$

Using inequality $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$,

$$
\mathbb{P}\left(\sum_{i=1}^{n} X_{i} \leq \sqrt{2 n \sigma^{2} u}+\frac{2 u M}{3}\right) \geq 1-e^{-u}
$$

[^0]For non-centered X_{i}, replace X_{i} with $X_{i}-\mathbb{E} X$ or $\mathbb{E} X-X_{i}$. Then $\left|X_{i}-\mathbb{E} X\right| \leq 2 M$ and so with high probability

$$
\sum\left(X_{i}-\mathbb{E} X\right) \leq \sqrt{2 n \sigma^{2} u}+\frac{4 u M}{3}
$$

Normalizing by n,

$$
\frac{1}{n} \sum X_{i}-\mathbb{E} X \leq \sqrt{\frac{2 \sigma^{2} u}{n}}+\frac{4 u M}{3 n}
$$

and

$$
\mathbb{E} X-\frac{1}{n} \sum X_{i} \leq \sqrt{\frac{2 \sigma^{2} u}{n}}+\frac{4 u M}{3 n}
$$

Whenever $\sqrt{\frac{2 \sigma^{2} u}{n}} \geq \frac{4 u M}{3 n}$, we have $u \leq \frac{n \sigma^{2}}{8 M^{2}}$. So, $\left|\frac{1}{n} \sum X_{i}-\mathbb{E} X\right| \lesssim \sqrt{\frac{2 \sigma^{2} u}{n}}$ for $u \lesssim n \sigma^{2}$ (range of normal deviations). This is predicted by the Central Limit Theorem (condition for CLT is $n \sigma^{2} \rightarrow \infty$). If $n \sigma^{2}$ does not go to infinity, we get Poisson behavior.

Recall from the last lecture that the we're interested in concentration inequalities because we want to know $\mathbb{P}(f(X) \neq Y)$ while we only observe $\frac{1}{n} \sum_{i=1}^{n} I\left(f\left(X_{i}\right) \neq Y_{i}\right)$. In Bernstein's inequality take " $X_{i}^{\prime \prime}$ to be $I\left(f\left(X_{i}\right) \neq Y_{i}\right)$. Then, since $2 M=1$, we get

$$
\mathbb{E} I\left(f\left(X_{i}\right) \neq Y_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} I\left(f\left(X_{i}\right) \neq Y_{i}\right) \leq \sqrt{\frac{2 \mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right)\left(1-\mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right)\right) u}{n}}+\frac{2 u}{3 n}
$$

because $\mathbb{E} I\left(f\left(X_{i}\right) \neq Y_{i}\right)=\mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right)=\mathbb{E} I^{2}$ and therefore $\operatorname{Var}(I)=\sigma^{2}=\mathbb{E} I^{2}-(\mathbb{E} I)^{2}$. Thus,

$$
\mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n} I\left(f\left(X_{i}\right) \neq Y_{i}\right)+\sqrt{\frac{2 \mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right) u}{n}}+\frac{2 u}{3 n}
$$

with probability at least $1-e^{-u}$. When the training error is zero,

$$
\mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right) \leq \sqrt{\frac{2 \mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right) u}{n}}+\frac{2 u}{3 n} .
$$

If we forget about $2 u / 3 n$ for a second, we obtain $\mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right)^{2} \leq 2 \mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right) u / n$ and hence

$$
\mathbb{P}\left(f\left(X_{i}\right) \neq Y_{i}\right) \leq \frac{2 u}{n}
$$

The above zero-error rateis better than $n^{-1 / 2}$ predicted by CLT.

[^0]: ${ }^{1}$ exercise: show that this is the best approximation

