Define the following processes:

$$
Z(x)=\sup _{f \in \mathcal{F}}\left(\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right)
$$

and

$$
R(x)=\sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(x_{i}\right)
$$

Assume $a \leq f(x) \leq b$ for all f, x. In the last lecture we proved Z is concentrated around its expectation: with probability at least $1-e^{-t}$,

$$
Z<\mathbb{E} Z+(b-a) \sqrt{\frac{2 t}{n}}
$$

Furthermore,

$$
\begin{aligned}
\mathbb{E} Z(x) & =\mathbb{E} \sup _{f \in \mathcal{F}}\left(\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right) \\
& =\mathbb{E} \sup _{f \in \mathcal{F}}\left(\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}^{\prime}\right)\right]-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right) \\
& \leq \mathbb{E} \sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}^{\prime}\right)-f\left(x_{i}\right)\right) \\
& =\mathbb{E} \sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i}\left(f\left(x_{i}^{\prime}\right)-f\left(x_{i}\right)\right) \\
& \leq \mathbb{E} \sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(x_{i}^{\prime}\right)+\sup _{f \in \mathcal{F}}\left(-\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(x_{i}\right)\right) \\
& \leq 2 \mathbb{E} R(x) .
\end{aligned}
$$

Hence, with probability at least $1-e^{-t}$,

$$
Z<2 \mathbb{E} R+(b-a) \sqrt{\frac{2 t}{n}}
$$

It can be shown that R is also concentrated around its expectation: if $-M \leq f(x) \leq M$ for all f, x, then with probability at least $1-e^{-t}$,

$$
\mathbb{E} R \leq R+M \sqrt{\frac{2 t}{n}}
$$

Hence, with high probability,

$$
Z(x) \leq 2 R(x)+4 M \sqrt{\frac{2 t}{n}}
$$

Theorem 23.1. If $-1 \leq f \leq 1$, then

$$
\mathbb{P}\left(Z(x) \leq 2 \mathbb{E} R(x)+2 \sqrt{\frac{2 t}{n}}\right) \geq 1-e^{-t}
$$

If $0 \leq f \leq 1$, then

$$
\mathbb{P}\left(Z(x) \leq 2 \mathbb{E} R(x)+\sqrt{\frac{2 t}{n}}\right) \geq 1-e^{-t}
$$

Consider $\mathbb{E}_{\varepsilon} R(x)=\mathbb{E}_{\varepsilon} \sup _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} f\left(x_{i}\right)$. Since x_{i} are fixed, $f\left(x_{i}\right)$ are just vectors. Let $F \subseteq \mathbb{R}^{n}, f \in F$, where $f=\left(f_{1}, \ldots, f_{n}\right)$.

Define contraction $\varphi_{i}: \mathbb{R} \mapsto \mathbb{R}$ for $i=1, \ldots, n$ such that $\varphi_{i}(0)=0$ and $\left|\varphi_{i}(s)-\varphi_{i}(t)\right| \leq|s-t|$.
Let $G: \mathbb{R} \mapsto \mathbb{R}$ be convex and non-decreasing.
The following theorem is called Comparison inequality for Rademacher process.

Theorem 23.2.

$$
\mathbb{E}_{\varepsilon} G\left(\sup _{f \in F} \sum \varepsilon_{i} \varphi_{i}\left(f_{i}\right)\right) \leq \mathbb{E}_{\varepsilon} G\left(\sup _{f \in F} \sum \varepsilon_{i} f_{i}\right) .
$$

Proof. It is enough to show that for $T \subseteq \mathbb{R}^{2}, t=\left(t_{1}, t_{2}\right) \in T$

$$
\mathbb{E}_{\varepsilon} G\left(\sup _{t \in T} t_{1}+\varepsilon \varphi\left(t_{2}\right)\right) \leq \mathbb{E}_{\varepsilon} G\left(\sup _{t \in T} t_{1}+\varepsilon t_{2}\right)
$$

i.e. enough to show that we can erase contraction for 1 coordinate while fixing all others.

Since $\mathbb{P}(\varepsilon= \pm 1)=1 / 2$, we need to prove

$$
\frac{1}{2} G\left(\sup _{t \in T} t_{1}+\varphi\left(t_{2}\right)\right)+\frac{1}{2} G\left(\sup _{t \in T} t_{1}-\varphi\left(t_{2}\right)\right) \leq \frac{1}{2} G\left(\sup _{t \in T} t_{1}+t_{2}\right)+\frac{1}{2} G\left(\sup _{t \in T} t_{1}-t_{2}\right) .
$$

Assume $\sup _{t \in T} t_{1}+\varphi\left(t_{2}\right)$ is attained on $\left(t_{1}, t_{2}\right)$ and $\sup _{t \in T} t_{1}-\varphi\left(t_{2}\right)$ is attained on $\left(s_{1}, s_{2}\right)$. Then

$$
t_{1}+\varphi\left(t_{2}\right) \geq s_{1}+\varphi\left(s_{2}\right)
$$

and

$$
s_{1}-\varphi\left(s_{2}\right) \geq t_{1}-\varphi\left(t_{2}\right)
$$

Again, we want to show

$$
\Sigma=G\left(t_{1}+\varphi\left(t_{2}\right)\right)+G\left(s_{1}-\varphi\left(s_{2}\right)\right) \leq G\left(t_{1}+t_{2}\right)+G\left(t_{1}-t_{2}\right) .
$$

Case 1: $t_{2} \leq 0, s_{2} \geq 0$
Since φ is a contraction, $\varphi\left(t_{2}\right) \leq\left|t_{2}\right| \leq-t_{2},-\varphi\left(s_{2}\right) \leq s_{2}$.

$$
\begin{aligned}
\Sigma=G\left(t_{1}+\varphi\left(t_{2}\right)\right)+G\left(s_{1}-\varphi\left(s_{2}\right)\right) & \leq G\left(t_{1}-t_{2}\right)+G\left(s_{1}+s_{2}\right) \\
& \leq G\left(\sup _{t \in T} t_{1}-t_{2}\right)+G\left(\sup _{t \in T} t_{1}+t_{2}\right) .
\end{aligned}
$$

Case 2: $t_{2} \geq 0, s_{2} \leq 0$
Then $\varphi\left(t_{2}\right) \leq t_{2}$ and $-\varphi\left(s_{2}\right) \leq-s_{2}$. Hence

$$
\Sigma \leq G\left(t_{1}+t_{2}\right)+G\left(s_{1}-s_{2}\right) \leq G\left(\sup _{t \in T} t_{1}+t_{2}\right)+G\left(\sup _{t \in T} t_{1}-t_{2}\right)
$$

Case 3: $t_{2} \geq 0, s_{2} \geq 0$
Case 3a: $s_{2} \leq t_{2}$
It is enough to prove

$$
G\left(t_{1}+\varphi\left(t_{2}\right)\right)+G\left(s_{1}-\varphi\left(s_{2}\right)\right) \leq G\left(t_{1}+t_{2}\right)+G\left(s_{1}-s_{2}\right)
$$

Note that $s_{2}-\varphi\left(s_{2}\right) \geq 0$ since $s_{2} \geq 0$ and $\varphi-\operatorname{contraction.~Since~}|\varphi(s)| \leq|s|$,

$$
s_{1}-s_{2} \leq s_{1}+\varphi\left(s_{2}\right) \leq t_{1}+\varphi\left(t_{2}\right)
$$

where we use the fact that t_{1}, t_{2} attain maximum.
Furthermore,
$G(\underbrace{\left(s_{1}-s_{2}\right)}_{u}+\underbrace{\left(s_{2}-\varphi\left(s_{2}\right)\right)}_{x})-G\left(s_{1}-s_{2}\right) \leq G\left(\left(t_{1}+\varphi\left(t_{2}\right)\right)+\left(s_{2}-\varphi\left(s_{2}\right)\right)\right)-G\left(t_{1}+\varphi\left(t_{2}\right)\right)$
Indeed, $\Psi(u)=G(u+x)-G(u)$ is non-decreasing for $x \geq 0$ since $\Psi^{\prime}(u)=G^{\prime}(u+x)-G^{\prime}(u)>0$ by convexity of G.
Now,

$$
\left(t_{1}+\varphi\left(t_{2}\right)\right)+\left(s_{2}-\varphi\left(s_{2}\right)\right) \leq t_{1}+t_{2}
$$

since

$$
\varphi\left(t_{2}\right)-\varphi\left(s_{2}\right) \leq\left|t_{2}-s_{2}\right|=t_{2}-s_{2} .
$$

Hence,

$$
\begin{aligned}
G\left(s_{1}-\varphi\left(s_{2}\right)\right)-G\left(s_{1}-s_{2}\right) & =G\left(\left(s_{1}-s_{2}\right)+\left(s_{2}-\varphi\left(s_{2}\right)\right)\right)-G\left(s_{1}-s_{2}\right) \\
& \leq G\left(t_{1}+t_{2}\right)-G\left(t_{1}+\varphi\left(t_{2}\right)\right)
\end{aligned}
$$

Case 3a: $t_{2} \leq s_{2}$

$$
\Sigma \leq G\left(s_{1}+s_{2}\right)+G\left(t_{1}-t_{2}\right)
$$

Again, it's enough to show

$$
G\left(t_{1}+\varphi\left(t_{2}\right)\right)-G\left(t_{1}-t_{2}\right) \leq G\left(s_{1}+s_{2}\right)-G\left(s_{1}-\varphi\left(s_{2}\right)\right)
$$

We have

$$
t_{1}-t_{2} \leq t_{1}-\varphi\left(t_{2}\right) \leq s_{1}-\varphi\left(s_{2}\right)
$$

since s_{1}, s_{2} achieves maximum and since $t_{2}+\varphi\left(t_{2}\right) \geq 0\left(\varphi\right.$ is a contraction and $\left.t_{2} \geq 0\right)$.
Hence,

$$
G(\underbrace{\left(t_{1}-t_{2}\right)}_{u}+\underbrace{\left(t_{2}+\varphi\left(t_{2}\right)\right)}_{x})-G\left(t_{1}-t_{2}\right) \leq G\left(\left(s_{1}-\varphi\left(s_{2}\right)\right)+\left(t_{2}+\varphi\left(t_{2}\right)\right)\right)-G\left(s_{1}-\varphi\left(s_{2}\right)\right)
$$

Since

$$
\varphi\left(t_{2}\right)-\varphi\left(s_{2}\right) \leq\left|t_{2}-s_{2}\right|=s_{2}-t_{2}
$$

we get

$$
\varphi\left(t_{2}\right)-\varphi\left(s_{2}\right) \leq s_{2}-t_{2}
$$

Therefore,

$$
s_{1}-\varphi\left(s_{2}\right)+\left(t_{2}+\varphi\left(t_{2}\right) \leq s_{1}+s_{2}\right.
$$

and so

$$
G\left(t_{1}+\varphi\left(t_{2}\right)\right)-G\left(t_{1}-t_{2}\right) \leq G\left(s_{1}+s_{2}\right)-G\left(s_{1}-\varphi\left(s_{2}\right)\right)
$$

Case 4: $t_{2} \leq 0, s_{2} \leq 0$
Proved in the same way as Case 3.

We now apply the theorem with $G(s)=(s)^{+}$.

Lemma 23.1.

$$
\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}\left(t_{i}\right)\right| \leq 2 \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} \varepsilon_{i} t_{i}\right|
$$

Proof. Note that

$$
|x|=(x)^{+}+(x)^{-}=(x)^{+}+(-x)^{+} .
$$

We apply the Contraction Inequality for Rademacher processes with $G(s)=(s)^{+}$.

$$
\begin{aligned}
\mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}\left(t_{i}\right)\right| & =\mathbb{E} \sup _{t \in T}\left(\left(\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}\left(t_{i}\right)\right)^{+}+\left(\sum_{i=1}^{n}\left(-\varepsilon_{i}\right) \varphi_{i}\left(t_{i}\right)\right)^{+}\right) \\
& \leq 2 \mathbb{E} \sup _{t \in T}\left(\sum_{i=1}^{n} \varepsilon_{i} \varphi_{i}\left(t_{i}\right)\right)^{+} \\
& \leq 2 \mathbb{E} \sup _{t \in T}\left(\sum_{i=1}^{n} \varepsilon_{i} t_{i}\right)^{+} \leq 2 \mathbb{E} \sup _{t \in T}\left|\sum_{i=1}^{n} \varepsilon_{i} t_{i}\right| .
\end{aligned}
$$

