Recall the definition of VC-dimension. Consider some examples:

- $\mathcal{C} = \{(-\infty, a) \text{ and } (a, \infty) : a \in \mathbb{R}\}. VC(\mathcal{C}) = 2.$
- $\mathcal{C} = \{(a, b) \cup (c, d)\}. VC(\mathcal{C}) = 4.$
- $f_1, \ldots, f_d : \mathcal{X} \to \mathbb{R}, \ \mathcal{C} = \{\{x : \sum_{k=1}^d \alpha_k f_k(x) > 0\} : \alpha_1, \ldots, \alpha_d \in \mathbb{R}\}$

Theorem 9.1. $VC(\mathcal{C})$ in the last example above is at most d.

Proof. Observation: For any $\{x_1, \ldots, x_{d+1}\}$ if we cannot shatter $\{x_1, \ldots, x_{d+1}\} \longleftrightarrow \exists I \subseteq \{1 \ldots d+1\}$ s.t. we cannot pick out $\{x_i, i \in I\}$. If we can pick out $\{x_i, i \in I\}$, then for some $C \in \mathcal{C}$ there are $\alpha_1, \ldots, \alpha_d$ s.t. $\sum_{k=1}^d \alpha_k f_k(x) > 0$ for $i \in I$ and $\sum_{k=1}^d \alpha_k f_k(x) \leq 0$ for $i \notin I$. Denote

$$\left(\sum_{k=1}^d \alpha_k f_k(x_1), \dots, \sum_{k=1}^d \alpha_k f_k(x_{d+1})\right) = F(\alpha) \in \mathbb{R}^{d+1}.$$

By linearity,

$$F(\alpha) = \sum_{k=1}^{d} \alpha_k \left(f_k(x_1), \dots, f(x_{d+1}) \right) = \sum_{k=1}^{d} \alpha_k F_k \subseteq H \subset \mathbb{R}^{d+1}$$

and *H* is a *d*-dim subspace. Hence, $\exists \phi \neq 0, \phi \cdot h = 0, \forall h \in H$ (ϕ orthogonal to *H*). Let $I = \{i : \phi_i > 0\}$, where $\phi = (\phi_1, \ldots, \phi_{d+1})$. If $I = \emptyset$ then take $-\phi$ instead of ϕ so that ϕ has positive coordinates.

Claim: We cannot pick out $\{x_i, i \in I\}$. Suppose we can: then $\exists \alpha_1, \ldots, \alpha_d$ s.t. $\sum_{k=1}^d \alpha_k f_k(x_i) > 0$ for $i \in I$ and $\sum_{k=1}^d \alpha_k f_k(x_i) \leq 0$ for $i \notin I$. But $\phi \cdot F(\alpha) = 0$ and so

$$\phi_1 \sum_{k=1}^d \alpha_k f_k(x_1) + \ldots + \phi_{d+1} \sum_{k=1}^d \alpha_k f_k(x_{d+1}) = 0.$$

Hence,

$$\sum_{i \in I} \underbrace{\phi_i\left(\sum_{k=1}^d \alpha_k f_k(x_i)\right)}_{>0} = \sum_{i \notin I} \underbrace{(-\phi_i)}_{\geq 0} \underbrace{\left(\sum_{k=1}^d \alpha_k f_k(x_i)\right)}_{\leq 0}.$$

Contradiction.

• Half-spaces in \mathbb{R}^d : {{ $\alpha_1 x_1 + \ldots + \alpha_d x_d + \alpha_{d+1} > 0$ } : $\alpha_1, \ldots, \alpha_{d+1} \in \mathbb{R}$ }.

1

By setting $f_1 = x_1, \ldots, f_d = x_d, f_{d+1} = 1$, we can use the previous result and therefore $VC(\mathcal{C}) \leq d+1$ for half-spaces.

Reminder: $\triangle_n(\mathcal{C}, x_1, \dots, x_n) = \operatorname{card}\{\{x_1, \dots, x_n\} \cap C : C \in \mathcal{C}\}.$

Lemma 9.1. If C and D are VC classes of sets,

- (1) $\mathcal{C} = \{C^c : C \in \mathcal{C}\}$ is VC
- (2) $\mathcal{C} \cap \mathcal{D} = \{C \cap D : C \in \mathcal{C}, D \in \mathcal{D}\}$ is VC
- (3) $\mathcal{C} \cup \mathcal{D} = \{C \cup D : C \in \mathcal{C}, D \in \mathcal{D}\}$ is VC

Proof. (1) obvious - we can shatter x_1, \ldots, x_n by \mathcal{C} iff we can do the same by \mathcal{C}^c .

(2) By Sauer's Lemma,

$$\Delta_n(\mathcal{C} \cap \mathcal{D}, x_1, \dots, x_n) \leq \Delta_n(\mathcal{C}, x_1, \dots, x_n) \Delta_n(\mathcal{C} \cap \mathcal{D}, x_1, \dots, x_n)$$
$$\leq \left(\frac{en}{V_{\mathcal{C}}}\right)_{\mathcal{C}}^V \left(\frac{en}{V_{\mathcal{D}}}\right)_{\mathcal{D}}^V \leq 2^n$$

for large enough n.

(3) $(C \cup D) = (C^c \cap D^c)^c$, and the result follows from (1) and (2).

Example 1. Decision trees on \mathbb{R}^d with linear decision rules: $\{C_1 \cap \ldots C_\ell\}$ is VC and $\bigcup_{\text{leaves}} \{C_1 \cap \ldots C_\ell\}$ is VC.

Example 2. Neural networks with depth ℓ and binary leaves.