Let $x \in \mathcal{X}^{n}$. Suppose $A_{1}, A_{2} \subseteq \mathcal{X}^{n}$. We want to define $d\left(A_{1}, A_{2}, x\right)$.

Definition 29.1.

$$
d\left(A_{1}, A_{2}, x\right)=\inf \left\{\operatorname{card}\left\{i \leq n: x_{i} \neq y_{i}^{1} \text { and } x_{i} \neq y_{i}^{2}\right\}, y^{1} \in A_{1}, y^{2} \in A_{2}\right\}
$$

Theorem 29.1.

$$
\mathbb{E} 2^{d\left(A_{1}, A_{2}, x\right)}=\int 2^{d\left(A_{1}, A_{2}, x\right)} d P^{n}(x) \leq \frac{1}{P^{n}\left(A_{1}\right) P^{n}\left(A_{2}\right)}
$$

and

$$
\mathbb{P}\left(d\left(A_{1}, A_{2}, x\right) \geq t\right) \leq \frac{1}{P^{n}\left(A_{1}\right) P^{n}\left(A_{2}\right)} \cdot 2^{-t}
$$

We first prove the following lemma:
Lemma 29.1. Let $0 \leq g_{1}, g_{2} \leq 1, g_{i}: \mathcal{X} \mapsto[0,1]$. Then

$$
\int \min \left(2, \frac{1}{g_{1}(x)}, \frac{1}{g_{2}(x)}\right) d P(x) \cdot \int g_{1}(x) d P(x) \cdot \int g_{2}(x) d P(x) \leq 1
$$

Proof. Notice that $\log x \leq x-1$.
So enough to show

$$
\int \min \left(2, \frac{1}{g_{1}}, \frac{1}{g_{2}}\right) d P+\int g_{1} d P+\int g_{2} d P \leq 3
$$

which is the same as

$$
\int\left[\min \left(2, \frac{1}{g_{1}}, \frac{1}{g_{2}}\right)+g_{1}+g_{2}\right] d P \leq 3
$$

It's enough to show

$$
\min \left(2, \frac{1}{g_{1}}, \frac{1}{g_{2}}\right)+g_{1}+g_{2} \leq 3
$$

If min is equal to 2 , then $g_{1}, g_{2} \leq \frac{1}{2}$ and the sum is less than 3 .
If min is equal to $\frac{1}{g_{1}}$, then $g_{1} \geq \frac{1}{2}$ and $g_{1} \geq g_{2}$, so $\min +g_{1}+g_{2} \leq \frac{1}{g_{1}}+2 g_{1} \leq 3$.
We now prove the Theorem:
Proof. Proof by induction on n.
$\mathbf{n}=1$:

$$
d\left(A_{1}, A_{2}, x\right)=0 \text { if } x \in A_{1} \cup A_{2} \text { and } d\left(A_{1}, A_{2}, x\right)=1 \text { otherwise }
$$

$$
\begin{aligned}
\int 2^{d\left(A_{1}, A_{2}, x\right)} d P(x) & =\int \min \left(2, \frac{1}{I\left(x \in A_{1}\right)}, \frac{1}{I\left(x \in A_{2}\right)}\right) d P(x) \\
& \leq \frac{1}{\int I\left(x \in A_{1}\right) d P(x) \cdot \int I\left(x \in A_{2}\right) d P(x)} \\
& =\frac{1}{P\left(A_{1}\right) P\left(A_{2}\right)}
\end{aligned}
$$

$\mathbf{n} \rightarrow \mathbf{n}+\mathbf{1}:$
Let $x \in \mathcal{X}^{n+1}, A_{1}, A_{2} \subseteq \mathcal{X}^{n+1}$. Denote $x=\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=\left(z, x_{n+1}\right)$.
Define

$$
\begin{aligned}
& A_{1}\left(x_{n+1}\right)=\left\{z \in \mathcal{X}^{n}:\left(z, x_{n+1}\right) \in A_{1}\right\} \\
& A_{2}\left(x_{n+1}\right)=\left\{z \in \mathcal{X}^{n}:\left(z, x_{n+1}\right) \in A_{2}\right\}
\end{aligned}
$$

and

$$
B_{1}=\bigcup_{x_{n+1}} A_{1}\left(x_{n+1}\right), \quad B_{2}=\bigcup_{x_{n+1}} A_{2}\left(x_{n+1}\right)
$$

Then

$$
\begin{gathered}
d\left(A_{1}, A_{2}, x\right)=d\left(A_{1}, A_{2},\left(z, x_{n+1}\right)\right) \leq 1+d\left(B_{1}, B_{2}, z\right), \\
d\left(A_{1}, A_{2},\left(z, x_{n+1}\right)\right) \leq d\left(A_{1}\left(x_{n+1}\right), B_{2}, z\right),
\end{gathered}
$$

and

$$
d\left(A_{1}, A_{2},\left(z, x_{n+1}\right)\right) \leq d\left(B_{1}, A_{2}\left(x_{n+1}\right), z\right)
$$

Now,

$$
\int 2^{d\left(A_{1}, A_{2}, x\right)} d P^{n+1}\left(z, x_{n+1}\right)=\int \underbrace{\int 2^{d\left(A_{1}, A_{2},\left(z, x_{n+1}\right)\right)} d P^{n}(z)}_{I\left(x_{n+1}\right)} d P\left(x_{n+1}\right)
$$

The inner integral ca ne bounded by induction as follows

$$
\begin{aligned}
I\left(x_{n+1}\right) & \leq \int 2^{1+d\left(B_{1}, B_{2}, z\right)} d P^{n}(z) \\
& =2 \int 2^{d\left(B_{1}, B_{2}, z\right)} d P^{n}(z) \\
& \leq 2 \cdot \frac{1}{P^{n}\left(B_{1}\right) P^{n}\left(B_{2}\right)}
\end{aligned}
$$

Moreover, by induction,

$$
I\left(x_{n+1}\right) \leq \int 2^{d\left(A_{1}\left(x_{n+1}\right), B_{2}, z\right)} d P^{n}(z) \leq \frac{1}{P^{n}\left(A_{1}\left(x_{n+1}\right)\right) P^{n}\left(B_{2}\right)}
$$

and

$$
I\left(x_{n+1}\right) \leq \int 2^{d\left(B_{1}, A_{2}\left(x_{n+1}\right), z\right)} d P^{n}(z) \leq \frac{1}{P^{n}\left(B_{1}\right) P^{n}\left(A_{2}\left(x_{n+1}\right)\right)}
$$

Hence,

$$
\begin{aligned}
I\left(x_{n+1}\right) & \leq \min \left(\frac{2}{P^{n}\left(B_{1}\right) P^{n}\left(B_{2}\right)}, \frac{1}{P^{n}\left(A_{1}\left(x_{n+1}\right)\right) P^{n}\left(B_{2}\right)}, \frac{1}{P^{n}\left(B_{1}\right) P^{n}\left(A_{2}\left(x_{n+1}\right)\right)}\right) \\
& =\frac{1}{P^{n}\left(B_{1}\right) P^{n}\left(B_{2}\right)} \min (2, \underbrace{\frac{1}{P^{n}\left(A_{1}\left(x_{n+1}\right) / P^{n}\left(B_{1}\right)\right.}}_{1 / g_{1}\left(x_{n+1}\right)}, \underbrace{\frac{1}{P^{n}\left(A_{2}\left(x_{n+1}\right) / P^{n}\left(B_{2}\right)\right.}}_{1 / g_{2}\left(x_{n+1}\right)})
\end{aligned}
$$

So,

$$
\begin{aligned}
\int I\left(x_{n+1}\right) d P\left(x_{n+1}\right) & \leq \frac{1}{P^{n}\left(B_{1}\right) P^{n}\left(B_{2}\right)} \int \min \left(2, \frac{1}{g_{1}}, \frac{1}{g_{2}}\right) d P \\
& \leq \frac{1}{P^{n}\left(B_{1}\right) P^{n}\left(B_{2}\right)} \cdot \frac{1}{\int g_{1} d P \cdot \int g_{2} d P} \\
& =\frac{1}{P^{n}\left(B_{1}\right) P^{n}\left(B_{2}\right)} \cdot \frac{1}{P^{n+1}\left(A_{1}\right) / P^{n}\left(B_{1}\right) \cdot P^{n+1}\left(A_{2}\right) / P^{n}\left(B_{2}\right)} \\
& =\frac{1}{P^{n+1}\left(A_{1}\right) P^{n+1}\left(A_{2}\right)}
\end{aligned}
$$

because $\int P^{n}\left(A_{1}\left(x_{n+1}\right)\right) d P\left(x_{n+1}\right)=P^{n+1}\left(A_{1}\right)$.

