Consider the classification setting, i.e. $\mathcal{Y}=\{-1,+1\}$. Denote the set of weak classifiers

$$
\mathcal{H}=\{h: \mathcal{X} \mapsto[-1,+1]\}
$$

and assume $\mathcal{H}$ is a VC-subgraph. Hence, $\mathcal{D}\left(\mathcal{H}, \varepsilon, d_{x}\right) \leq K \cdot V \log 2 / \varepsilon$. A voting algorithm outputs

$$
f=\sum_{i=1}^{T} \lambda_{i} h_{i}, \text { where } h_{i} \in \mathcal{H}, \sum_{i=1}^{T} \lambda_{i} \leq 1, \lambda_{i}>0
$$

Let

$$
\mathcal{F}=\text { conv } \mathcal{H}=\left\{\sum_{i=1}^{T} \lambda_{i} h_{i}, h_{i} \in \mathcal{H}, \sum_{i=1}^{T} \lambda_{i} \leq 1, \quad \lambda_{i} \geq 0, T \geq 1\right\}
$$

Then $\operatorname{sign}(f(x))$ is the prediction of the label $y$. Let

$$
\mathcal{F}_{d}=\operatorname{conv}_{d} \mathcal{H}=\left\{\sum_{i=1}^{d} \lambda_{i} h_{i}, h_{i} \in \mathcal{H}, \sum_{i=1}^{T} \lambda_{i} \leq 1, \quad \lambda_{i} \geq 0\right\} .
$$

Theorem 17.1. For $a n y x=\left(x_{1}, \ldots, x_{n}\right)$, if

$$
\log \mathcal{D}\left(\mathcal{H}, \varepsilon, d_{x}\right) \leq K V \log 2 / \varepsilon
$$

then

$$
\log \mathcal{D}\left(\operatorname{conv}_{d} \mathcal{H}, \varepsilon, d_{x}\right) \leq K V d \log 2 / \varepsilon
$$

Proof. Let $h^{1}, \ldots, h^{D}$ be $\varepsilon$-packing of $\mathcal{H}$ with respect to $d_{x}, D=\mathcal{D}\left(\mathcal{H}, \varepsilon, d_{x}\right)$.
Note that $d_{x}$ is a norm.

$$
d_{x}(f, g)=\left(\frac{1}{n} \sum_{i=1}^{n}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right)^{2}\right)^{1 / 2}=\|f-g\|_{x}
$$

If $f=\sum_{i=1}^{d} \lambda_{i} h_{i}$, for all $h_{i}$ we can find $h^{k_{i}}$ such that $d\left(h_{i}, h^{k_{i}}\right) \leq \varepsilon$. Let $f^{\prime}=\sum_{i=1}^{d} \lambda_{i} h^{k_{i}}$. Then

$$
d\left(f, f^{\prime}\right)=\left\|f-f^{\prime}\right\|_{x}=\left\|\sum_{i=1}^{d} \lambda_{i}\left(h_{i}-h^{k_{i}}\right)\right\|_{x} \leq \sum_{i=1}^{d} \lambda_{i}\left\|h_{i}-h^{k_{i}}\right\|_{x} \leq \varepsilon
$$

Define

$$
\mathcal{F}_{D, d}=\left\{\sum_{i=1}^{d} \lambda_{i} h_{i}, h_{i} \in\left\{h^{1}, \ldots, h^{D}\right\}, \sum_{i=1}^{d} \lambda_{i} \leq 1, \lambda_{i} \geq 0\right\}
$$

Hence, we can approximate any $f \in \mathcal{F}_{d}$ by $f^{\prime} \in \mathcal{F}_{D, d}$ within $\varepsilon$.

Now, let $f=\sum_{i=1}^{d} \lambda_{i} h_{i} \in \mathcal{F}_{D, d}$ and consider the following construction. We will choose $Y_{1}(x), \ldots, Y_{k}(x)$ from $h_{1}, \ldots, h_{d}$ according to $\lambda_{1}, \ldots, \lambda_{d}$ :

$$
\mathbb{P}\left(Y_{j}(x)=h_{i}(x)\right)=\lambda_{i} \text { and } \mathbb{P}\left(Y_{j}(x)=0\right)=1-\sum_{i=1}^{d} \lambda_{i} .
$$

Note that with this construction

$$
\mathbb{E} Y_{j}(x)=\sum_{i=1}^{d} \lambda_{i} h_{i}(x)=f(x)
$$

Furthermore,

$$
\begin{aligned}
\mathbb{E}\left\|\frac{1}{k} \sum_{j=1}^{k} Y_{j}-f\right\|_{x}^{2} & =\mathbb{E} \frac{1}{n} \sum_{i=1}^{n}\left(\frac{1}{k} \sum_{j=1}^{k} Y_{j}\left(x_{i}\right)-f\left(x_{i}\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(\frac{1}{k} \sum_{j=1}^{k}\left(Y_{j}\left(x_{i}\right)-\mathbb{E} Y_{j}\left(x_{i}\right)\right)\right)^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} \frac{1}{k^{2}} \sum_{j=1}^{k} \mathbb{E}\left(Y_{j}\left(x_{i}\right)-\mathbb{E} Y_{j}\left(x_{i}\right)\right)^{2} \\
& \leq \frac{4}{k}
\end{aligned}
$$

because $\left|Y_{j}\left(x_{i}\right)-\mathbb{E} Y_{j}\left(x_{i}\right)\right| \leq 2$. Choose $k=4 / \varepsilon^{2}$. Then

$$
\mathbb{E}\left\|\frac{1}{k} \sum_{j=1}^{k} Y_{j}-f\right\|_{x}^{2}=\mathbb{E} d_{x}\left(\frac{1}{k} \sum_{j=1}^{k} Y_{j}, f\right)^{2} \leq \varepsilon^{2}
$$

So, there exists a deterministic combination $\frac{1}{k} \sum_{j=1}^{k} Y_{j}$ such that $d_{x}\left(\frac{1}{k} \sum_{j=1}^{k} Y_{j}, f\right) \leq \varepsilon$.
Define

$$
\mathcal{F}_{D, d}^{\prime}=\left\{\frac{1}{k} \sum_{j=1}^{k} Y_{j}: k=4 / \varepsilon^{2}, Y_{j} \in\left\{h_{1}, \ldots, h_{d}\right\} \subseteq\left\{h^{1}, \ldots, h^{D}\right\}\right\}
$$

Hence, we can approximate any $f=\sum_{i=1}^{d} \lambda_{i} h_{i} \in \mathcal{F}_{D, d}, h_{i} \in\left\{h^{1}, \ldots, h^{D}\right\}$, by $f^{\prime} \in \mathcal{F}_{D, d}^{\prime}$ within $\varepsilon$.
Let us now bound the cardinality of $\mathcal{F}_{D, d}^{\prime}$. To calculate the number of ways to choose $k$ functions out of $h_{1}, \ldots, h_{d}$, assume each of $h_{i}$ is chosen $k_{d}$ times such that $k=k_{1}+\ldots+k_{d}$.

We can formulate the problem as finding the number of strings of the form

$$
\underbrace{00 \ldots 0}_{k_{1}} 1 \underbrace{00 \ldots 0}_{k_{2}} 1 \ldots 1 \underbrace{00 \ldots 0}_{k_{d}} .
$$

In this string, there are $d-1 " 1 " s$ and $k " 0 " s$, and total length is $k+d-1$. The number of such strings is $\binom{k+d-1}{k}$. Hence,

$$
\begin{aligned}
\operatorname{card} \mathcal{F}_{D, d}^{\prime} & \leq\binom{ D}{d} \times\binom{ k+d}{k} \\
& \leq \frac{D^{D-d} D^{d}}{d^{d}(D-d)^{D-d}} \frac{(k+d)^{k+d}}{k^{k} d^{d}} \\
& =\left(\frac{D(k+d)}{d^{2}}\right)^{d}\left(\frac{D}{D-d}\right)^{D-d}\left(\frac{k+d}{k}\right)^{k} \\
& =\left(\frac{D(k+d)}{d^{2}}\right)^{d}\left(1+\frac{d}{D-d}\right)^{D-d}\left(1+\frac{d}{k}\right)^{k}
\end{aligned}
$$

using inequality $1+x \leq e^{x}$

$$
\leq\left(\frac{D(k+d) e^{2}}{d^{2}}\right)^{d}
$$

where $k=4 / \varepsilon^{2}$ and $D=\mathcal{D}\left(\mathcal{F}, \varepsilon, d_{x}\right)$.
Therefore, we can approximate any $f \in \mathcal{F}_{d}$ by $f^{\prime \prime} \in \mathcal{F}_{D, d}$ within $\varepsilon$ and $f^{\prime \prime} \in \mathcal{F}_{D, d}$ by $f^{\prime} \in \mathcal{F}_{D, d}^{\prime}$ within $\varepsilon$. Hence, we can approximate any $f \in \mathcal{F}_{d}$ by $f^{\prime} \in \mathcal{F}_{D, d}^{\prime}$ within $2 \varepsilon$. Moreover,

$$
\begin{aligned}
\log \mathcal{N}\left(\mathcal{F}_{d}=\operatorname{conv}_{d} \mathcal{H}, 2 \varepsilon, d_{x}\right) & \leq d \log \frac{e^{2} D(k+d)}{d^{2}} \\
& =d\left(2+\log D+\log \frac{k+d}{d^{2}}\right) \\
& \leq d\left(2+K V \log \frac{2}{\varepsilon}+\log \left(1+\frac{4}{\varepsilon^{2}}\right)\right) \\
& \leq K V d \log \frac{2}{\varepsilon}
\end{aligned}
$$

since $\frac{k+d}{d^{2}} \leq 1+k$ and $d \geq 1, V \geq 1$.

