Assume $f \in \mathcal{F} = \{f : \mathcal{X} \mapsto \mathbb{R}\}$ and x_1, \ldots, x_n are i.i.d. Denote $\mathbb{P}_n f = \frac{1}{n} \sum_{i=1}^n f(x_i)$ and $\mathbb{P}f = \int f dP = \mathbb{E}f$. We are interested in bounding $\frac{1}{n} \sum_{i=1}^n f(x_i) - \mathbb{E}f$. Worst-case scenario is the value

$$\sup_{f\in\mathcal{F}}\left|\mathbb{P}_{n}f-\mathbb{P}f\right|.$$

The Glivenko-Cantelli property $GC(\mathcal{F}, P)$ says that

$$\mathbb{E}\sup_{f\in\mathcal{F}}|\mathbb{P}_nf-\mathbb{P}f|\to 0$$

as $n \to \infty$.

- Algorithm can output any $f \in \mathcal{F}$
- Objective is determined by $\mathbb{P}_n f$ (on the data)
- Goal is $\mathbb{P}f$
- Distribution P is unknown

The most pessimistic requirement is

$$\sup_{P} \mathbb{E} \sup_{f \in \mathcal{F}} |\mathbb{P}_n f - \mathbb{P} f| \to 0$$

which we denote

uniform
$$GC(\mathcal{F})$$
.

VC classes of sets

Let $\mathcal{C} = \{C \subseteq X\}, f_C(x) = I(x \in C)$. The most pessimistic value is

$$\sup_{P} \mathbb{E} \sup_{C \in \mathcal{C}} \left| \mathbb{P}_{n} \left(C \right) - \mathbb{P} \left(C \right) \right| \to 0.$$

For any sample $\{x_1, \ldots, x_n\}$, we can look at the ways that \mathcal{C} intersects with the sample:

$$\{C \cap \{x_1, \ldots, x_n\} : C \in \mathcal{C}\}.$$

Let

$$\Delta_n(\mathcal{C}, x_1, \dots, x_n) = \operatorname{card} \{ C \cap \{ x_1, \dots, x_n \} : C \in \mathcal{C} \},\$$

the number of different subsets picked out by $C \in \mathcal{C}$. Note that this number is at most 2^n . Denote

$$\Delta_n(\mathcal{C}) = \sup_{\{x_1,\dots,x_n\}} \Delta_n(\mathcal{C}, x_1,\dots,x_n) \le 2^n.$$

1

We will see that for some classes, $\triangle_n(\mathcal{C}) = 2^n$ for $n \leq V$ and $\triangle_n(\mathcal{C}) < 2^n$ for n > V for some constant V.

What if $\Delta_n(\mathcal{C}) = 2^n$ for all $n \ge 1$? That means we can always find $\{x_1, \ldots, x_n\}$ such that $C \in \mathcal{C}$ can pick out any subset of it: " \mathcal{C} shatters $\{x_1, \ldots, x_n\}$ ". In some sense, we do not learn anything.

Definition 8.1. If $V < \infty$, then C is called a VC class. V is called VC dimension of C.

Sauer's lemma states the following:

Lemma 8.1.

$$\forall \{x_1, \dots, x_n\}, \quad \bigtriangleup_n(\mathcal{C}, x_1, \dots, x_n) \le \left(\frac{en}{V}\right)^V \text{ for } n \ge V.$$

Hence, C will pick out only very few subsets out of 2^n (because $\left(\frac{en}{V}\right)^V \sim n^V$).

Lemma 8.2. The number $\triangle_n(\mathcal{C}, x_1, \ldots, x_n)$ of subsets picked out by \mathcal{C} is bounded by the number of subsets shattered by \mathcal{C} .

Identify

$$\mathcal{C} := \{ C \cap \{ x_1, \dots, x_n \} : C \in \mathcal{C} \}$$

i.e. restrict C on $\{x_1, \ldots, x_n\}$.

We will say that \mathcal{C} is hereditary if and only if whenever $C \in \mathcal{C}$, then any $B \subseteq C$ is in \mathcal{C} . If \mathcal{C} is hereditary, Lemma is obvious. Otherwise, we will transform $\mathcal{C} \to \mathcal{C}'$, hereditary, in such a way that card $\mathcal{C} = \text{card } \mathcal{C}'$, i.e. the number of shattered subsets can only decrease.

card
$$C = \text{card } C' = \#(\text{shattered by } \mathcal{C}') \leq \#(\text{shattered by } \mathcal{C})$$

Define

$$T_i(C) = \begin{cases} C - \{x_i\} & \text{if } C - \{x_i\} \text{ is not in } \mathcal{C} \\ C & \text{otherwise} \end{cases}$$

Define

$$T_i(\mathcal{C}) = \{T_i(C) : C \in \mathcal{C}\}.$$

2

Note that card $T_i(\mathcal{C}) = \text{card } \mathcal{C}$. Moreover, if C is shattered by $T_i(\mathcal{C})$, it is shattered by \mathcal{C} . Indeed, if $x_i \notin C$, then obvious. Otherwise, let $B \in T_i(\mathcal{C})$, but $B \in \mathcal{C}$. Since $x_i \in B$, x_i was not removed from B. This means that $B - \{x_i\} \in \mathcal{C}$. This proves that \mathcal{C} shatters C. Let

$$T = T_1 \circ \ldots \circ T_n$$

and consider $T^k(\mathcal{C})$ until $T^{k+1}(\mathcal{C}) = T^k(\mathcal{C})$. This will happen because if $T^{k+1}(\mathcal{C}) \neq T^k(\mathcal{C})$, it means that for some C and some i, point x_i was removed from C, $T_i(C) = C - \{x_i\}$, $k \leq 2^n \cdot n$.

 $T(T^k(\mathcal{C})) = T^k(\mathcal{C})$ implies that $T^k(\mathcal{C})$ is hereditary because for any $C \in T^k(\mathcal{C})$ and any $x_i \in C, C - \{x_i\}$ is also in $T^k(\mathcal{C})$. This is our $\mathcal{C}' = T^k(\mathcal{C})$.

Corollary 8.1. If $V < \infty$, then

$$\Delta_n(\mathcal{C}) \le \sum_{i=0}^{V} \binom{n}{i} \le \left(\frac{en}{V}\right)^V$$

Indeed, for arbitrary $\{x_1, \ldots, x_n\}$,

 $\triangle_n(\mathcal{C}, x_1, \dots, x_n) \leq \text{card} \text{ (shattered subsets of } \{x_1, \dots, x_n\})$

 \leq card (subsets of size $\leq V$)

$$=\sum_{i=0}^{V}\binom{n}{i}.$$