Assume $f \in \mathcal{F}=\{f: \mathcal{X} \mapsto \mathbb{R}\}$ and x_{1}, \ldots, x_{n} are i.i.d. Denote $\mathbb{P}_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)$ and $\mathbb{P} f=\int f d P=\mathbb{E} f$. We are interested in bounding $\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\mathbb{E} f$.

Worst-case scenario is the value

$$
\sup _{f \in \mathcal{F}}\left|\mathbb{P}_{n} f-\mathbb{P} f\right|
$$

The Glivenko-Cantelli property $G C(\mathcal{F}, P)$ says that

$$
\mathbb{E} \sup _{f \in \mathcal{F}}\left|\mathbb{P}_{n} f-\mathbb{P} f\right| \rightarrow 0
$$

as $n \rightarrow \infty$.

- Algorithm can output any $f \in \mathcal{F}$
- Objective is determined by $\mathbb{P}_{n} f$ (on the data)
- Goal is $\mathbb{P} f$
- Distribution P is unknown

The most pessimistic requirement is

$$
\sup _{P} \mathbb{E} \sup _{f \in \mathcal{F}}\left|\mathbb{P}_{n} f-\mathbb{P} f\right| \rightarrow 0
$$

which we denote

$$
\text { uniform } G C(\mathcal{F})
$$

VC classes of sets

Let $\mathcal{C}=\{C \subseteq X\}, f_{C}(x)=I(x \in C)$. The most pessimistic value is

$$
\sup _{P} \mathbb{E} \sup _{C \in \mathcal{C}}\left|\mathbb{P}_{n}(C)-\mathbb{P}(C)\right| \rightarrow 0
$$

For any sample $\left\{x_{1}, \ldots, x_{n}\right\}$, we can look at the ways that \mathcal{C} intersects with the sample:

$$
\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\} .
$$

Let

$$
\triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)=\operatorname{card}\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\},
$$

the number of different subsets picked out by $C \in \mathcal{C}$. Note that this number is at most 2^{n}. Denote

$$
\triangle_{n}(\mathcal{C})=\sup _{\left\{x_{1}, \ldots, x_{n}\right\}} \triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \leq 2^{n}
$$

We will see that for some classes, $\triangle_{n}(\mathcal{C})=2^{n}$ for $n \leq V$ and $\triangle_{n}(\mathcal{C})<2^{n}$ for $n>V$ for some constant V.

What if $\triangle_{n}(\mathcal{C})=2^{n}$ for all $n \geq 1$? That means we can always find $\left\{x_{1}, \ldots, x_{n}\right\}$ such that $C \in \mathcal{C}$ can pick out any subset of it: " \mathcal{C} shatters $\left\{x_{1}, \ldots, x_{n}\right\}$ ". In some sense, we do not learn anything.

Definition 8.1. If $V<\infty$, then \mathcal{C} is called $a \mathrm{VC}$ class. V is called VC dimension of \mathcal{C}.

Sauer's lemma states the following:

Lemma 8.1.

$$
\forall\left\{x_{1}, \ldots, x_{n}\right\}, \quad \triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) \leq\left(\frac{e n}{V}\right)^{V} \text { for } n \geq V
$$

Hence, \mathcal{C} will pick out only very few subsets out of 2^{n} (because $\left(\frac{e n}{V}\right)^{V} \sim n^{V}$).

Lemma 8.2. The number $\triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right)$ of subsets picked out by \mathcal{C} is bounded by the number of subsets shattered by \mathcal{C}.

Identify

$$
\mathcal{C}:=\left\{C \cap\left\{x_{1}, \ldots, x_{n}\right\}: C \in \mathcal{C}\right\}
$$

i.e. restrict \mathcal{C} on $\left\{x_{1}, \ldots, x_{n}\right\}$.

We will say that \mathcal{C} is hereditary if and only if whenever $C \in \mathcal{C}$, then any $B \subseteq C$ is in \mathcal{C}.
If \mathcal{C} is hereditary, Lemma is obvious. Otherwise, we will transform $\mathcal{C} \rightarrow \mathcal{C}^{\prime}$, hereditary, in such a way that $\operatorname{card} \mathcal{C}=\operatorname{card} C^{\prime}$, i.e. the number of shattered subsets can only decrease.

$$
\operatorname{card} C=\operatorname{card} C^{\prime}=\#\left(\text { shattered by } \mathcal{C}^{\prime}\right) \leq \#(\text { shattered by } \mathcal{C})
$$

Define

$$
T_{i}(C)= \begin{cases}C-\left\{x_{i}\right\} & \text { if } C-\left\{x_{i}\right\} \text { is not in } \mathcal{C} \\ C & \text { otherwise }\end{cases}
$$

Define

$$
T_{i}(\mathcal{C})=\left\{T_{i}(C): C \in \mathcal{C}\right\}
$$

Note that card $T_{i}(\mathcal{C})=\operatorname{card} \mathcal{C}$. Moreover, if C is shattered by $T_{i}(\mathcal{C})$, it is shattered by \mathcal{C}. Indeed, if $x_{i} \notin C$, then obvious. Otherwise, let $B \in T_{i}(\mathcal{C})$, but $B \in \mathcal{C}$. Since $x_{i} \in B, x_{i}$ was not removed from B. This means that $B-\left\{x_{i}\right\} \in \mathcal{C}$. This proves that \mathcal{C} shatters C.

Let

$$
T=T_{1} \circ \ldots \circ T_{n}
$$

and consider $T^{k}(\mathcal{C})$ until $T^{k+1}(\mathcal{C})=T^{k}(\mathcal{C})$. This will happen because if $T^{k+1}(\mathcal{C}) \neq T^{k}(\mathcal{C})$, it means that for some C and some i, point x_{i} was removed from $C, T_{i}(C)=C-\left\{x_{i}\right\}$, $k \leq 2^{n} \cdot n$.
$T\left(T^{k}(\mathcal{C})\right)=T^{k}(\mathcal{C})$ implies that $T^{k}(\mathcal{C})$ is hereditary because for any $C \in T^{k}(\mathcal{C})$ and any $x_{i} \in C, C-\left\{x_{i}\right\}$ is also in $T^{k}(\mathcal{C})$. This is our $\mathcal{C}^{\prime}=T^{k}(\mathcal{C})$.

Corollary 8.1. If $V<\infty$, then

$$
\triangle_{n}(\mathcal{C}) \leq \sum_{i=0}^{V}\binom{n}{i} \leq\left(\frac{e n}{V}\right)^{V}
$$

Indeed, for arbitrary $\left\{x_{1}, \ldots, x_{n}\right\}$,

$$
\begin{aligned}
\triangle_{n}\left(\mathcal{C}, x_{1}, \ldots, x_{n}\right) & \leq \operatorname{card}\left(\text { shattered subsets of }\left\{x_{1}, \ldots, x_{n}\right\}\right) \\
& \leq \operatorname{card}(\text { subsets of size } \leq V) \\
& =\sum_{i=0}^{V}\binom{n}{i}
\end{aligned}
$$

