
Lecture 08 Vapnik-Chervonenkis classes of sets. 18.465

Assume f ∈ F = {f : X 7→ R} and x1, . . . , xn are i.i.d. Denote Pnf = 1

n

∑n

i=1
f(xi) and

Pf =
∫

fdP = Ef . We are interested in bounding 1

n

∑n

i=1
f(xi) − Ef .

Worst-case scenario is the value

sup
f∈F

|Pnf − Pf | .

The Glivenko-Cantelli property GC(F , P ) says that

E sup
f∈F

|Pnf − Pf | → 0

as n → ∞.

• Algorithm can output any f ∈ F

• Objective is determined by Pnf (on the data)

• Goal is Pf

• Distribution P is unknown

The most pessimistic requirement is

sup
P

E sup
f∈F

|Pnf − Pf | → 0

which we denote

uniformGC(F).

VC classes of sets

Let C = {C ⊆ X}, fC(x) = I(x ∈ C). The most pessimistic value is

sup
P

E sup
C∈C

|Pn (C) − P (C)| → 0.

For any sample {x1, . . . , xn}, we can look at the ways that C intersects with the sample:

{C ∩ {x1, . . . , xn} : C ∈ C}.

Let

△n(C, x1, . . . , xn) = card {C ∩ {x1, . . . , xn} : C ∈ C},

the number of different subsets picked out by C ∈ C. Note that this number is at most 2n.

Denote

△n(C) = sup
{x1,...,xn}

△n(C, x1, . . . , xn) ≤ 2n.
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We will see that for some classes, △n(C) = 2n for n ≤ V and △n(C) < 2n for n > V for some

constant V .

What if △n(C) = 2n for all n ≥ 1? That means we can always find {x1, . . . , xn} such that

C ∈ C can pick out any subset of it: ”C shatters {x1, . . . , xn}”. In some sense, we do not

learn anything.

Definition 8.1. If V < ∞, then C is called a VC class. V is called VC dimension of C.

Sauer’s lemma states the following:

Lemma 8.1.

∀{x1, . . . , xn}, △n(C, x1, . . . , xn) ≤
(en

V

)V

for n ≥ V.

Hence, C will pick out only very few subsets out of 2n (because
(

en
V

)V
∼ nV ).

Lemma 8.2. The number △n(C, x1, . . . , xn) of subsets picked out by C is bounded by the

number of subsets shattered by C.

Identify

C := {C ∩ {x1, . . . , xn} : C ∈ C}

i.e. restrict C on {x1, . . . , xn}.

We will say that C is hereditary if and only if whenever C ∈ C, then any B ⊆ C is in C.

If C is hereditary, Lemma is obvious. Otherwise, we will transform C → C′, hereditary, in

such a way that card C = card C ′, i.e. the number of shattered subsets can only decrease.

card C = card C ′ = #(shattered by C′) ≤ #(shattered by C)

Define

Ti(C) =







C − {xi} if C − {xi} is not in C

C otherwise

Define

Ti(C) = {Ti(C) : C ∈ C}.
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Note that card Ti(C) = card C. Moreover, if C is shattered by Ti(C), it is shattered by C.

Indeed, if xi /∈ C, then obvious. Otherwise, let B ∈ Ti(C), but B ∈ C. Since xi ∈ B, xi was

not removed from B. This means that B − {xi} ∈ C. This proves that C shatters C.

Let

T = T1 ◦ . . . ◦ Tn

and consider T k(C) until T k+1(C) = T k(C). This will happen because if T k+1(C) 6= T k(C),

it means that for some C and some i, point xi was removed from C, Ti(C) = C − {xi},

k ≤ 2n · n.

T (T k(C)) = T k(C) implies that T k(C) is hereditary because for any C ∈ T k(C) and any

xi ∈ C, C − {xi} is also in T k(C). This is our C′ = T k(C).

Corollary 8.1. If V < ∞, then

△n(C) ≤

V
∑

i=0

(

n

i

)

≤
(en

V

)V

Indeed, for arbitrary {x1, . . . , xn},

△n(C, x1, . . . , xn) ≤ card (shattered subsets of {x1, . . . , xn})

≤ card (subsets of size ≤ V )

=

V
∑

i=0

(

n

i

)

.
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