If we substitute $f-\mathbb{E} f$ instead of f, the result of Lecture 30 becomes:

$$
\begin{aligned}
\sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n}\left(f\left(x_{i}\right)-\mathbb{E} f\right)\right| & \leq \mathbb{E} \sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n}\left(f\left(x_{i}\right)-\mathbb{E} f\right)\right| \\
& +\sqrt{\left(4(b-a) \mathbb{E} \sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n}\left(f\left(x_{i}\right)-\mathbb{E} f\right)\right|+2 n \sigma^{2}\right) t}+(b-a) \frac{t}{3}
\end{aligned}
$$

with probability at least $\geq 1-e^{-t}$. Here, $a \leq f \leq b$ for all $f \in \mathcal{F}$ and $\sigma^{2}=\sup _{f \in \mathcal{F}} \operatorname{Var}(f)$. Now divide by n to get

$$
\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\mathbb{E} f\right| \leq \mathbb{E} \sup _{f \in \mathcal{F}}|\ldots|+\sqrt{\left(4(b-a) \mathbb{E} \sup _{f \in \mathcal{F}}|\ldots|+2 \sigma^{2}\right) \frac{t}{n}}+(b-a) \frac{t}{3 n}
$$

Compare this result to the Martingale-difference method (McDiarmid):

$$
\sup _{f \in \mathcal{F}}\left|\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\mathbb{E} f\right| \leq \mathbb{E} \sup _{f \in \mathcal{F}}|\ldots|+\sqrt{\frac{2(b-a)^{2} t}{n}}
$$

The term $2(b-a)^{2}$ is worse than $4(b-a) \mathbb{E} \sup _{f \in \mathcal{F}}|\ldots|+2 \sigma^{2}$.
An algorithm outputs $f_{0} \in \mathcal{F}, f_{0}$ depends on data x_{1}, \ldots, x_{n}. What is $\mathbb{E} f_{0}$? Assume $0 \leq f \leq 1$ (loss function). Then

$$
\left|\mathbb{E} f_{0}-\frac{1}{n} \sum_{i=1}^{n} f_{0}\left(x_{i}\right)\right| \leq \sup _{f \in \mathcal{F}}\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right| \leq \text { use Talagrand's inequality . }
$$

What if we knew that $\mathbb{E} f_{0} \leq \varepsilon$ and the family $\mathcal{F}_{\varepsilon}=\{f \in \mathcal{F}, \mathbb{E} f \leq \varepsilon\}$ is much smaller than \mathcal{F}. Then looking at $\sup _{f \in \mathcal{F}}\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right|$ is too conservative.

Pin down location of f_{0}. Pretend we know $\mathbb{E} f_{0} \leq \varepsilon, f_{0} \in \mathcal{F}_{\varepsilon}$. Then with probability at least $1-e^{-t}$,

$$
\begin{aligned}
\left|\mathbb{E} f_{0}-\frac{1}{n} \sum_{i=1}^{n} f_{0}\left(x_{i}\right)\right| & \leq \sup _{f \in \mathcal{F}_{\varepsilon}}\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right| \\
& \leq \mathbb{E} \sup _{f \in \mathcal{F}_{\varepsilon}}\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right|+\sqrt{\left(4 \mathbb{E} \sup _{f \in \mathcal{F}_{\varepsilon}}|\ldots|+2 \sigma_{\varepsilon}^{2}\right) \frac{t}{n}}+\frac{t}{3 n}
\end{aligned}
$$

where $\sigma_{\varepsilon}^{2}=\sup _{f \in \mathcal{F}_{\varepsilon}} \operatorname{Var}(f)$. Note that for $f \in \mathcal{F}_{\varepsilon}$

$$
\operatorname{Var}(f)=\mathbb{E} f^{2}-(\mathbb{E} f)^{2} \leq \mathbb{E} f^{2} \leq \mathbb{E} f \leq \varepsilon
$$

since $0 \leq f \leq 1$.
Denote $\varphi(\varepsilon)=\mathbb{E} \sup _{f \in \mathcal{F}_{\varepsilon}}\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right|$. Then

$$
\left|\mathbb{E} f_{0}-\frac{1}{n} \sum_{i=1}^{n} f_{0}\left(x_{i}\right)\right| \leq \varphi(\varepsilon)+\sqrt{(4 \varphi(\varepsilon)+2 \varepsilon) \frac{t}{n}}+\frac{t}{3 n}
$$

with probability at least $1-e^{-t}$.
Take $\varepsilon=2^{-k}, k=0,1,2, \ldots$. Change $t \rightarrow t+2 \log (k+2)$. Then, for a fixed k, with probability at least $1-e^{-t} \frac{1}{(k+2)^{2}}$,

$$
\left|\mathbb{E} f_{0}-\frac{1}{n} \sum_{i=1}^{n} f_{0}\left(x_{i}\right)\right| \leq \varphi(\varepsilon)+\sqrt{(4 \varphi(\varepsilon)+2 \varepsilon) \frac{t+2 \log (k+2)}{n}}+\frac{t+2 \log (k+2)}{3 n}
$$

For all $k \geq 0$, the statement holds with probability at least

$$
1-\underbrace{\sum_{k=1}^{\infty} \frac{1}{(k+2)^{2}}}_{\frac{\pi^{2}}{6}-1} e^{-t} \geq 1-e^{-t}
$$

For f_{0}, find k such that $2^{-k-1} \leq \mathbb{E} f_{0}<2^{-k}$ (hence, $2^{-k} \leq 2 \mathbb{E} f_{0}$). Use the statement for $\varepsilon_{k}=2^{-k}, k \leq \log _{2} \frac{1}{\mathbb{E} f_{0}}$.

$$
\begin{array}{r}
\left|\mathbb{E} f_{0}-\frac{1}{n} \sum_{i=1}^{n} f_{0}\left(x_{i}\right)\right| \leq \varphi\left(\varepsilon_{k}\right)+\sqrt{\left(4 \varphi\left(\varepsilon_{k}\right)+2 \varepsilon_{k}\right)} \frac{t+2 \log (k+2)}{n}+\frac{t+2 \log (k+2)}{3 n} \\
\leq \varphi\left(2 \mathbb{E} f_{0}\right)+\sqrt{\left(4 \varphi\left(2 \mathbb{E} f_{0}\right)+4 \mathbb{E} f_{0}\right) \frac{t+2 \log \left(\log _{2} \frac{1}{\mathbb{E} f_{0}}+2\right)}{n}}+\frac{t+2 \log \left(\log _{2} \frac{1}{\mathbb{E} f_{0}}+2\right)}{3 n}=\Phi\left(\mathbb{E} f_{0}\right)
\end{array}
$$

Hence, $\mathbb{E} f_{0} \leq \frac{1}{n} \sum_{i=1}^{n} f_{0}\left(x_{i}\right)+\Phi\left(\mathbb{E} f_{0}\right)$. Denote $x=\mathbb{E} f_{0}$. Then $x \leq \bar{f}+\Phi(x)$.

Theorem 31.1. Let $0 \leq f \leq 1$ for all $f \in \mathcal{F}$. Define $\mathcal{F}_{\varepsilon}=\{f \in \mathcal{F}, \mathbb{E} f \leq \varepsilon\}$ and $\varphi(\varepsilon)=\mathbb{E} \sup _{f \in \mathcal{F}_{\varepsilon}}\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right|$. Then, with probability at least $1-e^{-t}$, for any $f_{0} \in \mathcal{F}$, $\mathbb{E} f_{0} \leq x^{*}$, where x^{*} is the largest solution of

$$
x^{*}=\frac{1}{n} \sum_{i=1}^{n} f_{0}\left(x_{i}\right)+\Phi\left(x^{*}\right) .
$$

Main work is to find $\varphi(\varepsilon)$. Consider the following example.
Example 1.If

$$
\sup _{x_{1}, \ldots, x_{n}} \log \mathcal{D}\left(\mathcal{F}, u, d_{x}\right) \leq \mathcal{D}(\mathcal{F}, u)
$$

then

$$
\mathbb{E} \sup _{f \in \mathcal{F}_{\varepsilon}}\left|\mathbb{E} f-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right| \leq \frac{k}{\sqrt{n}} \int_{0}^{\sqrt{\varepsilon}} \log ^{1 / 2} \mathcal{D}(\mathcal{F}, \varepsilon) d \varepsilon .
$$

