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Lecture 12 VC subgraph classes of functions. Packing and covering numbers. 18.465


VC-subgraph classes of functions 

C

Let F = {f : X 7→ R} and 

f = {(x, t) ∈ X × R : 0 ≤ t ≤ f(x) or f(x) ≤ t ≤ 0}. 

Define class of sets C = {Cf : f ∈ F}. 

Definition 12.1. If C is a VC class of sets, then F is VC-subgraph class of functions and, 

by definition, V C(F) = V C(C). 

Note that equivalent definition of Cf is 

′
Cf = {(x, t) ∈ X × R : f(x) ≥ t}. 

Example 1. C = {C ⊆ X}, F(C) = {I(X ∈ C) : C ∈ C}. Then F(C) is VC-subgraph class


if and only if C is a VC class of sets.


Example 2. Assume d functions are fixed: {f1, . . . , fd} : X 7→ R. Let


d 

F = αifi(x) : α1, . . . , αd ∈ R . 
i=1 

Then V C(F) ≤ d + 1. To prove this, it’s easier to use the second definition. 

Packing and covering numbers 

Let f, g ∈ F and assume we have a distance function d(f, g). 

Example 3. If X1, . . . , Xn are data points, then 

n
1 

d1(f, g) = |f(Xi) − g(Xi)| 
n 

i=1 

and 
n 

�1/2 

1 
d2(f, g) = (f(Xi) − g(Xi))

2 . 
n 

i=1 

Definition 12.2. Given ε > 0 and f1, . . . , fN ∈ F , we say that f1, . . . , fN are ε-separated if 

d(fi, fj) > ε for any i 6= j. 
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Definition 12.3. The ε-packing number, D(F , ε, d), is the maximal cardinality of an ε-

separated set. 

Note that D(F , ε, d) is decreasing in ε. 

Definition 12.4. Given ε > 0 and f1, . . . , fN ∈ F , we say that the set f1, . . . , fN is an 

ε-cover of F if for any f ∈ F , there exists 1 ≤ i ≤ N such that d(f, fi) ≤ ε. 

Definition 12.5. The ε-covering number, N (F , ε, d), is the minimal cardinality of an ε-

cover of F . 

Lemma 12.1. 

D(F , 2ε, d) ≤ N (F , ε, d) ≤ D(F , ε, d). 

Proof. To prove the first inequality, assume that D(F , 2ε, d) > N (F , ε, d). Let the packing 

corresponding to the packing number D(F , 2ε, d) = D be f1, . . . , fD. Let the covering 

′
corresponding to the covering number N (F , ε, d) = N be f
1

′ , . . . , fN . Since D > N , there 

exist fi and fj such that for some f ′ 

k 

′ ′
d(fi, f k) ≤ ε and d(fj, f k) ≤ ε. 

Therefore, by triangle inequality, d(fi, fj) ≤ 2ε, which is a contradiction.


To prove the second inequality, assume f1, . . . , fD is an optimal packing. For any f ∈ F ,


f1, . . . , fD, f would also be ε-packing if d(f, fi) > ε for all i. Since f1, . . . , fD is optimal, this


cannot be true, and, therefore, for any f ∈ F there exists fi such that d(f, fi) ≤ ε. Hence


f1, . . . , fD is also a cover. Hence, N (F , ε, d) ≤ D(F , ε, d). �


Example 4. Consider the L1-ball {x ∈ R
d , |x| ≤ 1} = B1(0) and d(x, y) = |x − y|1. Then 

� �d � �d
2 + ε 3 

D(B1(0), ε, d) ≤ ≤ ,
ε ε 

where ε ≤ 1. Indeed, let f1, . . . , fD be optimal ε-packing. Then the volume of the ball with 

ε/2-fattening (so that the center of small balls fall within the boundary) is 

� ε� �d� ε 
Vol 1 + = Cd 1 + . 
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1+ε/2 
1 

Moreover, the volume of each of the small balls 

� ε� �d� ε 
Vol = Cd

2 2 

and the volume of all the small balls is 
� ε�d 

DCd . 
2 

Therefore, 
� �d

2 + ε 
D ≤ . 

ε 

Definition 12.6. logN (F , ε, d) is called metric entropy. 

3For example, logN (B1(0), ε, d) ≤ d log 
ε 
. 
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