VC-subgraph classes of functions

Let $\mathcal{F} = \{ f : \mathcal{X} \mapsto \mathbb{R} \}$ and

$$C_f = \{ (x,t) \in \mathcal{X} \times \mathbb{R} : 0 \le t \le f(x) \text{ or } f(x) \le t \le 0 \}.$$

Define class of sets $\mathcal{C} = \{C_f : f \in \mathcal{F}\}.$

Definition 12.1. If C is a VC class of sets, then \mathcal{F} is VC-subgraph class of functions and, by definition, $VC(\mathcal{F}) = VC(C)$.

Note that equivalent definition of C_f is

$$C'_f = \{ (x,t) \in \mathcal{X} \times \mathbb{R} : f(x) \ge t \}.$$

Example 1. $C = \{C \subseteq \mathcal{X}\}, \ \mathcal{F}(C) = \{I(X \in C) : C \in C\}.$ Then $\mathcal{F}(C)$ is VC-subgraph class if and only if C is a VC class of sets.

Example 2. Assume d functions are fixed: $\{f_1, \ldots, f_d\} : \mathcal{X} \mapsto \mathbb{R}$. Let

$$\mathcal{F} = \left\{ \sum_{i=1}^{d} \alpha_i f_i(x) : \alpha_1, \dots, \alpha_d \in \mathbb{R} \right\}.$$

Then $VC(\mathcal{F}) \leq d+1$. To prove this, it's easier to use the second definition.

Packing and covering numbers

Let $f, g \in \mathcal{F}$ and assume we have a distance function d(f, g).

Example 3. If X_1, \ldots, X_n are data points, then

$$d_1(f,g) = \frac{1}{n} \sum_{i=1}^n |f(X_i) - g(X_i)|$$

and

$$d_2(f,g) = \left(\frac{1}{n}\sum_{i=1}^n \left(f(X_i) - g(X_i)\right)^2\right)^{1/2}.$$

Definition 12.2. Given $\varepsilon > 0$ and $f_1, \ldots, f_N \in \mathcal{F}$, we say that f_1, \ldots, f_N are ε -separated if $d(f_i, f_j) > \varepsilon$ for any $i \neq j$.

1

Definition 12.3. The ε -packing number, $\mathcal{D}(\mathcal{F}, \varepsilon, d)$, is the maximal cardinality of an ε -separated set.

Note that $\mathcal{D}(\mathcal{F}, \varepsilon, d)$ is decreasing in ε .

Definition 12.4. Given $\varepsilon > 0$ and $f_1, \ldots, f_N \in \mathcal{F}$, we say that the set f_1, \ldots, f_N is an ε -cover of \mathcal{F} if for any $f \in \mathcal{F}$, there exists $1 \le i \le N$ such that $d(f, f_i) \le \varepsilon$.

Definition 12.5. The ε -covering number, $\mathcal{N}(\mathcal{F}, \varepsilon, d)$, is the minimal cardinality of an ε -cover of \mathcal{F} .

Lemma 12.1.

$$\mathcal{D}(\mathcal{F}, 2\varepsilon, d) \leq \mathcal{N}(\mathcal{F}, \varepsilon, d) \leq \mathcal{D}(\mathcal{F}, \varepsilon, d).$$

Proof. To prove the first inequality, assume that $\mathcal{D}(\mathcal{F}, 2\varepsilon, d) > \mathcal{N}(\mathcal{F}, \varepsilon, d)$. Let the packing corresponding to the packing number $\mathcal{D}(\mathcal{F}, 2\varepsilon, d) = D$ be f_1, \ldots, f_D . Let the covering corresponding to the covering number $\mathcal{N}(\mathcal{F}, \varepsilon, d) = N$ be f'_1, \ldots, f'_N . Since D > N, there exist f_i and f_j such that for some f'_k

$$d(f_i, f'_k) \leq \varepsilon$$
 and $d(f_i, f'_k) \leq \varepsilon$.

Therefore, by triangle inequality, $d(f_i, f_j) \leq 2\varepsilon$, which is a contradiction.

To prove the second inequality, assume f_1, \ldots, f_D is an optimal packing. For any $f \in \mathcal{F}$, f_1, \ldots, f_D, f would also be ε -packing if $d(f, f_i) > \varepsilon$ for all i. Since f_1, \ldots, f_D is optimal, this cannot be true, and, therefore, for any $f \in \mathcal{F}$ there exists f_i such that $d(f, f_i) \leq \varepsilon$. Hence f_1, \ldots, f_D is also a cover. Hence, $\mathcal{N}(\mathcal{F}, \varepsilon, d) \leq \mathcal{D}(\mathcal{F}, \varepsilon, d)$.

Example 4. Consider the L_1 -ball $\{x \in \mathbb{R}^d, |x| \leq 1\} = B_1(0)$ and $d(x, y) = |x - y|_1$. Then

$$\mathcal{D}(B_1(0),\varepsilon,d) \le \left(\frac{2+\varepsilon}{\varepsilon}\right)^d \le \left(\frac{3}{\varepsilon}\right)^d,$$

where $\varepsilon \leq 1$. Indeed, let f_1, \ldots, f_D be optimal ε -packing. Then the volume of the ball with $\varepsilon/2$ -fattening (so that the center of small balls fall within the boundary) is

$$Vol\left(1+\frac{\varepsilon}{2}\right) = C_d\left(1+\frac{\varepsilon}{2}\right)^d.$$
 2

Moreover, the volume of each of the small balls

$$Vol\left(\frac{\varepsilon}{2}\right) = C_d\left(\frac{\varepsilon}{2}\right)^d$$

and the volume of all the small balls is

$$DC_d\left(\frac{\varepsilon}{2}\right)^d$$
.

Therefore,

$$D \le \left(\frac{2+\varepsilon}{\varepsilon}\right)^d.$$

Definition 12.6. $\log \mathcal{N}(\mathcal{F}, \varepsilon, d)$ is called metric entropy.

For example, $\log \mathcal{N}(B_1(0), \varepsilon, d) \leq d \log \frac{3}{\varepsilon}$.