CHAPTER III

A. Solvable and Nilpotent Lie Algebras

A.1. Consider the derived algebra and observe, as a consequence of Cor. 6.3, Chapter II that a semisimple Lie algebra equals its derived algebra.
A.2. A direct computation shows $[\mathrm{t}(n), \mathrm{t}(n)]=\mathrm{n}(n)$ and also that center $(\mathrm{t}(n))=\boldsymbol{R}\left(E_{11}+\ldots+E_{n n}\right)$ and center $(\mathrm{n}(n))=\boldsymbol{R} E_{1 n}$. By Theorem 2.4 (i), $\mathrm{n}(n)$ is nilpotent, thus by Cor. 2.6 solvable, whence $t(n)$ is solvable. Thus (i) and (ii) are proved. For (iii) we have

$$
B(X,[Y, Z])=\operatorname{Tr}(\operatorname{ad} X \text { ad } Y \text { ad } Z-\operatorname{ad} X \operatorname{ad} Z \text { ad } Y)=0
$$

because ad X, ad Y, and ad Z can, on the complexification, be expressed by upper triangular matrices and thereby the two matrix products on the right have the same diagonal elements.
A.3. We indicate a proof of this except for the second implication \Leftarrow, for which see e.g. Bourbaki [2], I, §5. If Dg is nilpotent, then it is solvable (Cor. 2.6); so, by definition, g is solvable. Conversely, if g is solvable,

For a fixed j the summand above equals

$$
\epsilon_{i j}(-1)^{i-1} \omega\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{i-1},\left[\tilde{X}_{i}, \widetilde{X}_{j}\right], \widetilde{X}_{i+1}, \ldots, \widehat{X}_{j}, \ldots, \widetilde{X}_{p+1}\right)
$$

Here $\epsilon_{i j}(-1)^{i-1}$ is independent of i so summation over i gives O because of equation (2) for $X=X_{j}$ (Chevalley-Eilenberg [1]).

Page 147, line 13 from below: Here we give some details of general interest which also yield the construction of G on the basis of the Levi decomposition $\mathfrak{g}=\mathfrak{r}+\mathfrak{s}$.

Theorem 8.1 Let G and H be Lie groups with Lie algebras \mathfrak{g} and \mathfrak{h}, respectively. Assume G simply connected. If $\sigma: \mathfrak{g} \rightarrow \mathfrak{h}$ is a homomorphism there exists a homomorphism $S: G \rightarrow H$ such that $d S=\sigma$.

For the proof (cf. Chevalley [2], Ch. IV) consider the product $G \times H$ and the two projections $p_{1}: G \times H \rightarrow G, p_{2}: G \times H \rightarrow H$ given by $p_{1}(g, h)=g$, $p_{2}(g, h)=h$, with differentials $d p_{1}(X, Y)=X, d p_{2}(X, Y)=Y$. Let \mathfrak{k} denote the graph $\{(X, \sigma X): X \in \mathfrak{g}\}$ and K the corresponding analytic subgroup of $G \times H$. The restriction $\varphi=p_{1} \mid K$ has differential $d \varphi=d p_{1} \mid \boldsymbol{k}$ which is the isomorphism $(X, \sigma X) \rightarrow X$ of \mathfrak{k} onto \mathfrak{g}. Thus $\varphi: K \rightarrow G$ is surjective with a discrete kernel so is a covering. Hence φ is an isomorphism and the homomorphism $S=p_{2} \circ \varphi^{-1}$ of G into H has differential σ.

Let G be a connected Lie group with Lie algebra \mathfrak{g}, G^{*} its universal covering group so $G=G^{*} / C$, where C is a discrete central subgroup. The group Aut (G^{*}) of analytic automorphisms of G^{*} is naturally identified with Aut (\mathfrak{g}) and is thus a Lie group. Then Aut (G) is identified with the closed subgroup preserving C so is also a Lie group. In fact, if $\sigma \in$ Aut (G) there exists an automorphism θ of G^{*} such that $d \theta=d \pi^{-1} \circ d \sigma \circ d \pi$, where π denotes the covering map of G^{*} onto G. Then $\pi \theta=\sigma \pi$ so θ maps C into itself.

If A and B are abstract groups and $b \rightarrow \sigma_{b}$ a homomorphism of B into Aut (A) the semi-direct product $A \times{ }_{\sigma} B$ is the group defined by the product

$$
(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a \sigma_{b}\left(a^{\prime}\right), b b^{\prime}\right)
$$

on $A \times B$. This is indeed a group containing A as a normal subgroup.
Proposition 8.2 Suppose A and B are connected Lie groups, σ an analytic homomorphism of B into Aut (A). Let \mathfrak{a} and \mathfrak{b} denote their respective Lie algebras. Then the group $G=A \times_{\sigma} B$ has Lie algebra

$$
\mathfrak{g}=\mathfrak{a}+\mathfrak{b}
$$

with the bracket relation

$$
\left[X+Y, X^{\prime}+Y^{\prime}\right]=\left[X, X^{\prime}\right]+d \psi(Y)\left(X^{\prime}\right)-d \psi\left(Y^{\prime}\right)(X)+\left[Y, Y^{\prime}\right],
$$

where $X, X^{\prime} \in \mathfrak{a}, Y, Y^{\prime} \in \mathfrak{b}$ and ψ is the map $b \rightarrow d \sigma_{b}$ of B into Aut (\mathfrak{a}).

Proof Since \mathfrak{a} and \mathfrak{b} are subalgebras of \mathfrak{g} it remains to prove

$$
[X, Y]=-d \psi(Y)(X), \quad X \in \mathfrak{a}, Y \in \mathfrak{b}
$$

The differential $d \psi$ is a homomorphism of \mathfrak{b} into $\partial(\mathfrak{a})$, the Lie algebra of derivations of \mathfrak{a}. We have

$$
d \sigma_{\exp t Y}=\psi(\exp t Y)=e^{t d \psi(Y)}
$$

Hence by the multiplication in $A \times{ }_{\sigma} B$,

$$
\begin{aligned}
& \exp (-t X) \exp (-t Y) \exp (t X) \exp (t Y)=\exp (-t X) \sigma_{\exp (-t Y)}(\exp (t X)) \\
& \quad=\exp (-t X) \exp \left(t d \sigma_{\exp (-t Y)}(X)\right)=\exp (-t X) \exp \left(t e^{-t d \psi(Y)}\right)
\end{aligned}
$$

Expanding this in powers of t we deduce from Lemma 1.8, $[X, Y]=$ $-d \psi(Y)(X)$ as desired.

Lemma 8.3 If \mathfrak{g} is a solvable Lie algebra then there exists a Lie group G with Lie algebra \mathfrak{g}.

Proof. This is proved by induction on dimg. If $\operatorname{dim} \mathfrak{g}=1$ we take $G=\mathbf{R}$. If $\operatorname{dim} \mathfrak{g}>1$ then $\mathfrak{D g} \neq \mathfrak{g}$ so there exists a subspace \mathfrak{h} such that $\mathfrak{D} \mathfrak{g} \subset \mathfrak{h}$ and $\operatorname{dim} \mathfrak{h}=\operatorname{dim} \mathfrak{g}-1$. Let $X \in \mathfrak{g}, X \notin \mathfrak{h}$. Then $[\mathfrak{h}, \mathfrak{g}] \subset \mathfrak{D} \mathfrak{g} \subset \mathfrak{h}$ so \mathfrak{h} is an ideal in \mathfrak{g} and $\mathfrak{g}=\mathfrak{h}+\mathbf{R} X$. Let by induction H be a simply connected Lie group with Lie algebra \mathfrak{h} and A a Lie group with Lie algebra $\mathbf{R} X$. The derivation $Y \rightarrow[X, Y]$ of \mathfrak{h} extends to a homomorphism $\sigma: A \rightarrow \operatorname{Aut}(\mathfrak{h})$ so by Proposition 8.2, $H \times_{\sigma} A$ serves as the desired G.

Now let \mathfrak{g} be an arbitrary Lie algebra over \mathbf{R}. Assuming the Levi decomposition $\mathfrak{g}=\mathfrak{r}+\mathfrak{s}$, we deduce from the Lemma 8.3, Proposition 8.2 and Corollary 6.5 that \mathfrak{g} is the Lie algebra of a Lie group.

Page 173, line 5 from below: By definition $\alpha(H)=\alpha^{\prime}(\varphi(H))$ so

$$
B\left(H_{\alpha}, H_{\beta}\right)=\alpha\left(H_{\beta}\right)=\alpha^{\prime}\left(\varphi\left(H_{\beta}\right)\right)=B^{\prime}\left(H_{\alpha^{\prime}}, \varphi\left(H_{\beta}\right)\right) .
$$

Combining with (2') we deduce $\varphi\left(H_{\beta}\right)=H_{\beta^{\prime}}$. Thus (2') becomes $B\left(H_{\alpha}, H_{\beta}\right)=B^{\prime}\left(\varphi\left(H_{\alpha}\right), \varphi\left(H_{\beta}\right)\right)$ and the isometry of φ follows by linearity.

Page 200, line 5 from below: Here it is useful to clarify some simple features of affine transformations. Let M and M^{\prime} be manifolds with affine connections ∇ and ∇^{\prime}, respectively. A diffeomorphism $\psi: M \rightarrow M^{\prime}$ is said to be an affine transformation if $\nabla_{\psi, \mathrm{X}}^{\prime}=\psi \circ \nabla_{\mathrm{X}} \circ \psi^{-1}$ on $\mathfrak{D}^{1}\left(M^{\prime}\right)$ for each $X=\mathfrak{D}^{1}(M)$.

Let $p \in M$ and suppose X_{1}, \ldots, X_{m} is a basis (over $\left.C^{\infty}\left(N_{p}\right)\right)$ of $\mathfrak{D}^{1}\left(N_{p}\right)$, N_{p} being a neighborhood of p. Then $X_{2}^{\prime}=\psi X_{2}(1 \leq i \leq m)$ is a basis

