MIT OpenCourseWare
http://ocw.mit.edu

18.950 Differential Geometry

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

CHAPTER 3

Global geometry of hypersurfaces

Lecture 24

Definition 24.1. A hypersurface is a subset $M \subset \mathbb{R}^{n+1}$ with the following property. For every $y \in M$ there is an open subset $V \subset \mathbb{R}^{n+1}$ containing y, and a function $\psi: V \rightarrow \mathbb{R}$ whose zero set $\psi^{-1}(0)$ is precisely $M \cap V$, and whose derivative is nonzero at any point of $M \cap V$.
Example 24.2. $M=\left\{x_{1} x_{2} x_{3}=0\right\} \subset \mathbb{R}^{n+1}$ is not a hypersurface.

We call ψ a local defining function for M near y. We are looking for properties of M that are independent of how it is presented as a zero set. The following is useful:

Proposition 24.3 (L'Hopital's rule; proof postponed). Let $\psi: V \rightarrow \mathbb{R}$ be a local defining function for M, and $\phi: V \rightarrow \mathbb{R}$ another smooth function which vanishes along $V \cap M$. Then there a unique smooth function $q: V \rightarrow \mathbb{R}$ such that $\phi=q \psi$.
Corollary 24.4. Let $\psi, \tilde{\psi}: V \rightarrow \mathbb{R}$ be two local defining functions for M. Then there is a unique smooth nowhere vanishing function $q: V \rightarrow \mathbb{R}$ such that $\tilde{\psi}=q \psi$.

Let M be a hypersurface, $\psi: V \rightarrow \mathbb{R}$ a local defining function, and $y \in V \cap M$ any point. The derivative $D \psi_{y}$ is independent of the choice of ψ up to multiplication with a nonzero real number. Hence, its nullspace

$$
T M_{y}=\operatorname{ker} D \psi_{y}=\left\{Y \in \mathbb{R}^{n+1} \mid D \psi_{y} \cdot Y=\left\langle\nabla \psi_{y}, Y\right\rangle=0\right\}
$$

is independent of ψ. We call it the tangent space of M at y.
Example 24.5. The unit sphere $S^{n}=\left\{\|\left. y\right|^{2}=1\right\} \subset \mathbb{R}^{n+1}$ is a hypersurface, and $T S_{y}^{n}=y^{\perp}$.

Lecture 25

Let $M \subset \mathbb{R}^{n+1}$ be a hypersurface. If ψ is a local defining function for M, then the map $\nabla \psi /\|\nabla \psi\|: M \cap V \rightarrow S^{n}$ is independent of the choice of ψ up to sign. This ambiguity will be further discussed later. Similarly, for all $y \in M \cap V$, the linear map

$$
L_{y}: T M_{y} \longrightarrow T M_{y}, \quad L_{y}(Y)=-D(\nabla \psi /\|\nabla \psi\|)_{y} \cdot Y
$$

is independent of the choice of ψ up to sign. We call it the shape operator of M at y.
Example 25.1. Take the hyperboloid $M=\left\{y_{1}^{2}=y_{2}^{2}+y_{3}^{2}+1\right\}$ in \mathbb{R}^{3} (this is Euclidean space, and not to be confused with curvature computations in Minkowski space). The tangent space at any point y is spanned by $Y_{1}=$ $\left(y_{2}, y_{1}, 0\right)$ and $Y_{2}=\left(y_{3}, 0, y_{1}\right)$. The matrix of $D(\nabla \psi /\|\nabla \psi\|)_{y}: T M_{y} \rightarrow T M_{y}$ with respect to this basis is

$$
\frac{1}{\|y\|^{3}}\left(\begin{array}{cc}
y_{1}^{2}-y_{2}^{2}+y_{3}^{2} & -2 y_{2} y_{3} \\
-2 y_{2} y_{3} & y_{1}^{2}-y_{3}^{2}+y_{2}^{2}
\end{array}\right)
$$

Lemma 25.2. For $X, Y \in T M_{y}$,

$$
\left\langle X, L_{y} \cdot Y\right\rangle=-\frac{1}{\left\|\nabla_{y} \psi\right\|}\left\langle X, D^{2} \psi_{y} \cdot Y\right\rangle .
$$

This proves that L_{y} is selfadjoint with respect to the standard inner product $\langle\cdot, \cdot\rangle$ on $T M_{y}$. In particular, it has real eigenvalues, which we call the principal curvatures. The mean, Gauss, and scalar curvature are then defined as usual. Finally, the Riemann curvature operator is defined to be

$$
\mathcal{R}_{y}=\Lambda^{2}\left(L_{y}\right): \Lambda^{2}\left(T M_{y}\right) \longrightarrow \Lambda^{2}\left(T M_{y}\right) .
$$

Note that $\Lambda^{2}\left(L_{y}\right)=\Lambda^{2}\left(-L_{y}\right)$, so the Riemann curvature operator does not suffer from sign ambiguities. The same applies to the Gauss curvature if n is even.

Example 25.3. The Gauss curvature of the hyperboloid discussed above is the determinant of L_{y}, which is $\left(2 y_{1}^{2}-1\right) /\|y\|^{6}$.
Proposition 25.4. Let $M \subset \mathbb{R}^{n+1}$ be a hypersurface. Take a point $y \in M$, a local defining function ψ for M near y, and an orthonormal basis Y_{1}, \ldots, Y_{n} of the tangent space $T M_{y}$.

$$
\begin{aligned}
& \kappa_{\text {mean }}= \pm \frac{1}{\left\|\nabla \psi_{y}\right\|} \sum_{i=1}^{n}\left\langle Y_{i}, D^{2} \psi_{y} \cdot Y_{i}\right\rangle, \\
& \kappa_{\text {gauss }}= \pm \frac{\operatorname{det}\left(D^{2} \psi_{y} \cdot Y_{1}, \ldots, D^{2} \psi_{y} \cdot Y_{n}, \nabla \psi_{y}\right)}{\left\|\nabla \psi_{y}\right\|^{n+1}} .
\end{aligned}
$$

Lecture 26

Let $M \subset \mathbb{R}^{n+1}$ be a hypersurface.
Definition 26.1. A function $f: M \rightarrow \mathbb{R}$ if smooth if for every point $y \in M$ there is an open subset $V \subset \mathbb{R}^{n+1}$ containing y, and a smooth function $\tilde{f}: V \rightarrow \mathbb{R}$, such that $f|M \cap V=\tilde{f}| M \cap V$. We call \tilde{f} a local extension of f.

The derivative $D f_{y}$ is the linear map $T M_{y} \rightarrow \mathbb{R}$ defined by $D f_{y}=D \tilde{f}_{y} \mid T M_{y}$. This is independent of the choice of local extension.

This generalizes to several functions, which means to maps $f: M \rightarrow \mathbb{R}^{k+1}$. If $M \subset \mathbb{R}^{n+1}$ and $N \subset \mathbb{R}^{k+1}$ are hypersurfaces, and $f: M \rightarrow \mathbb{R}^{k+1}$ a smooth map whose image lies in N, then the image of the derivative $D f_{y}$ lies in the tangent space to N at $f(y)$. Hence, $D f_{y}$ is a linear map $T M_{y} \rightarrow T N_{f(y)}$.
Definition 26.2. A Gauss map for M is a smooth map $\nu: M \rightarrow \mathbb{R}^{n+1}$ such that for all $y, \nu(y)$ is of unit length and orthogonal to $T M_{y}$.

We also call a Gauss map a choice of orientation. Suppose that such a ν is given. If ψ is a local defining function for M, we have $\nu= \pm \nabla \psi /\|\nabla \psi\|$ on $M \cap V$, where the sign is locally constant. If the sign is positive everywhere, we say that ψ is compatible with the choice of orientation.

Consider the derivative of the Gauss map, which is

$$
D \nu_{y}: T M_{y} \longrightarrow T\left(S^{n}\right)_{\nu(y)}=\nu(y)^{\perp}=T M_{y} .
$$

We re-define the shape operator to be $L_{y}=-D \nu_{y}$. This agrees with the previous definition, except that the sign ambiguity has been removed by the choice of orientation.

Remark 26.3. In Proposition 25.4, assume that M is oriented, and ψ compatible with the choice of orientation. Then the sign in $\kappa_{\text {mean }}$ is -1 . Assume in addition that the basis is chosen in such a way that $\operatorname{det}\left(Y_{1}, \ldots, Y_{n}, \nabla \psi_{y}\right)>$ 0 . Then the sign in $\kappa_{\text {gauss }}$ is $(-1)^{n}$.

Lecture 27

Definition 27.1. Let U, V be open subsets of \mathbb{R}^{n+1}. A smooth map ϕ : $V \rightarrow U$ is a diffeomorphism if it is one-to-one and the inverse ϕ^{-1} is also smooth (it is in fact enough to check that ϕ is one-to-one and that $D \phi_{y}$ is invertible for all y, since that ensures smoothness of the inverse).

One can think of diffeomorphisms as curvilinear coordinate changes.
Theorem 27.2 (Inverse function theorem; no proof). Let $\tilde{V} \subset \mathbb{R}^{n+1}$ be an open subset, $y \in \tilde{V}$ a point, and $\phi: \tilde{V} \rightarrow \mathbb{R}^{n+1}$ a smooth map such that $D \phi_{y}$ is invertible. Then there is an open subset $V \subset \tilde{V}$, still containing y, such that: $U=\phi(V)$ is open, and $\phi \mid V: V \rightarrow U$ is a diffeomorphism.

Corollary 27.3 (Implicit function theorem, special case). Let $\tilde{V} \subset \mathbb{R}^{n+1}$ be an open subset, $\psi: \tilde{V} \rightarrow \mathbb{R}$ a smooth function, and $y \in V$ a point such that $\psi(y)=0, D \psi(y) \neq 0$. Then there are: an open subset $V \subset \tilde{V}$, still containing y; an open subset $U \subset \mathbb{R}^{n+1}$ containing 0 ; and a diffeomorphism $\phi: U \rightarrow V$ such that $\phi(0)=y$, and $\psi(\phi(x))=x_{n+1}$ for all x.

The informal meaning is that in the curvilinear local coordinate system ϕ, ψ looks like a linear function.

Lecture 28

Let $M \subset \mathbb{R}^{n+1}$ be a hypersurface. Take a local defining function $\psi: V \rightarrow \mathbb{R}$, defined near some point $y \in V$. The derivative $D \psi_{y}: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ depends on ψ, but its nullspace

$$
\operatorname{ker}\left(D \psi_{y}\right)=\left\{X \in \mathbb{R}^{n+1} \mid D \psi_{y} \cdot X=\left\langle\nabla \psi_{y}, X\right\rangle=0\right\}
$$

does not, since it is the tangent space $T M_{y}$. Now assume that M comes with a Gauss vector, which on $V \cap M$ agrees with $\nabla \psi /\|\nabla \psi\|$. The Hessian $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R},(X, Y) \mapsto\left\langle X, D^{2} \psi_{y} Y\right\rangle$ depends on Y, but the map

$$
T M_{y} \times T M_{y} \longrightarrow \mathbb{R}, \quad(X, Y) \longmapsto \frac{1}{\|\nabla \psi\|}\left\langle X, D^{2} \psi_{y} Y\right\rangle
$$

is independent of ψ, since it can be written as $-\langle X, L Y\rangle$ where $L: T M_{y} \rightarrow$ $T M_{y}$ is the shape operator.

Example 28.1. Take the hyperboloid $M=\left\{y_{1}^{2}=y_{2}^{2}+y_{3}^{2}+1\right\}$ in \mathbb{R}^{3} (this is Euclidean space, and not to be confused with curvature computations in Minkowski space). A Gauss normal is

$$
\nu(y)=\frac{1}{\|y\|}\left(-y_{1}, y_{2}, y_{3}\right) .
$$

The tangent space at any point y is spanned by $Y_{1}=\left(y_{2}, y_{1}, 0\right)$ and $Y_{2}=$ $\left(y_{3}, 0, y_{1}\right)$. The matrix of $D \nu_{y}: T M_{y} \rightarrow T M_{y}$ with respect to this basis is

$$
\frac{1}{\|y\|^{3}}\left(\begin{array}{cc}
y_{1}^{2}-y_{2}^{2}+y_{3}^{2} & -2 y_{2} y_{3} \\
-2 y_{2} y_{3} & y_{1}^{2}-y_{3}^{2}+y_{2}^{2}
\end{array}\right)
$$

The Gauss curvature is its determinant, which is $\left(2 y_{1}^{2}-1\right) /\|y\|^{6}$. In particular, it's always positive.

Let U, V be open subsets of \mathbb{R}^{n+1}. A smooth map $\phi: V \rightarrow U$ is a diffeomorphism if it is one-to-one and the inverse ϕ^{-1} is also smooth (it is in fact enough to check that ϕ is one-to-one and that $D \phi_{y}$ is invertible for all y, since that ensures smoothness of the inverse). One can think of diffeomorphisms as curvilinear coordinate changes.

Theorem 28.2 (Inverse function theorem; no proof). Let $\tilde{V} \subset \mathbb{R}^{n+1}$ be an open subset, $y \in \tilde{V}$ a point, and $\phi: \tilde{V} \rightarrow \mathbb{R}^{n+1}$ a smooth map such that $D \phi_{y}$ is invertible. Then there is an open subset $V \subset \tilde{V}$, still containing y, such that: $U=\phi(V)$ is open, and $\phi \mid V: V \rightarrow U$ is a diffeomorphism.

Lecture 29

Corollary 29.1 (Implicit function theorem, special case). Let $\tilde{V} \subset \mathbb{R}^{n+1}$ be an open subset, $\psi: \tilde{V} \rightarrow \mathbb{R}$ a smooth function, and $y \in \tilde{V}$ a point such that $\psi(y)=0, D \psi(y) \neq 0$. Then there are: an open subset $V \subset \tilde{V}$, still containing y; an open subset $U \subset \mathbb{R}^{n+1}$ containing 0 ; and a diffeomorphism $\phi: U \rightarrow V$ such that $\phi(0)=y$, and $\psi(\phi(x))=x_{n+1}$ for all x.

The informal meaning is that in the curvilinear local coordinate system ϕ, ψ looks like a linear function.

Lemma 29.2. Let $U \subset \mathbb{R}^{n+1}$ be an open subset contaning the origin, and $\psi: U \rightarrow \mathbb{R}$ a smooth function which vanishes at all points $x \in U$ whose last coordinate x_{n+1} is zero. Then there is a unique smooth function q such that $\psi=q x_{n+1}$.

This and the previous Corollary together imply our version of l'Hopital's theorem (Lemma 20.2).
Definition 29.3. Let M be a hypersurface. A partial parametrization of M consists of an open subset $V \subset \mathbb{R}^{n+1}$, an open subset $U \subset \mathbb{R}^{n}$, and a hypersurface patch $f: U \rightarrow \mathbb{R}^{n+1}$ which is one-to-one (injective), and whose image is precisely $M \cap V$.

Corollary 29.4. For every point $y \in M$, there is a partial parametrization such that $y \in f(U)=M \cap V$.

If f is a partial parametrization, the $\partial_{x_{i}} f$ form a basis of $T M_{f(x)}$ for all x. Equivalently, $D f_{x}: \mathbb{R}^{n} \rightarrow T M_{f(x)}$ is an isomorphism (an invertible linear map). In the case where M comes with a Gauss vector field $\nu: M \rightarrow \mathbb{R}^{n+1}$, one can always choose these partial parametrizations to be compatible with it, which means that $\operatorname{det}\left(\partial_{x_{1}} f, \ldots, \partial_{x_{n}} f, \nu(f(x))\right)>0$.
Proposition 29.5. Let f be a partial parametrization. Denote by I^{f} its first fundamental form, and by S^{f} its shape operator. Under the identification $D f: \mathbb{R}^{n} \rightarrow T M_{f(x)}, I^{f}$ turns into the ordinary scalar product, and S^{f} into the shape operator S of M.

Explicitly, the second part of this says that $S: T M_{f(x)} \rightarrow T M_{f(x)}$ and $S^{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are related by

$$
S^{f}=D f^{-1} \cdot S \circ D f .
$$

Lecture 30

Proposition 30.1. Let $M \subset \mathbb{R}^{n+1}$ be a hypersurface. Take a point $y \in M$, a local defining function ψ for M near y, and an orthonormal basis Y_{1}, \ldots, Y_{n} of the tangent space $T M_{y}$.

$$
\begin{aligned}
& \kappa_{\text {mean }}= \pm \frac{1}{\left\|\nabla \psi_{y}\right\|} \sum_{i=1}^{n}\left\langle Y_{i}, D^{2} \psi_{y} \cdot Y_{i}\right\rangle, \\
& \kappa_{\text {gauss }}= \pm \frac{\operatorname{det}\left(D^{2} \psi_{y} \cdot Y_{1}, \ldots, D^{2} \psi_{y} \cdot Y_{n}, \nabla \psi_{y}\right)}{\left\|\nabla \psi_{y}\right\|^{n+1}} .
\end{aligned}
$$

Assume that $\nu(y)=\nabla \psi_{y} /\left\|\nabla \psi_{y}\right\|$. Then the sign in $\kappa_{\text {mean }}$ is -1 . Assume in addition that the basis is chosen in such a way that $\operatorname{det}\left(Y_{1}, \ldots, Y_{n}, \nabla \psi_{y}\right)>0$. Then the sign in $\kappa_{\text {gauss }}$ is $(-1)^{n}$.

Definition 30.2. A hypersurface $M \subset \mathbb{R}^{n+1}$ is compact if it is bounded and closed (closedness means that if a sequence $y_{n} \in M$ converges to some point $y_{\infty} \in \mathbb{R}^{n+1}$, then that point must also lie in M).

Definition 30.3. A hypersurface $M \subset \mathbb{R}^{n+1}$ is connected if every smooth function $\phi: M \rightarrow \mathbb{R}$ whose derivative is identically zero is actually constant.

Theorem 30.4 (from topology; no proof). A connected compact hypersurface is always orientable (in fact, there are precisely two choices of Gauss vectors, differing by a sign).

Take a connected compact hypersurface, oriented inwards. Then there is a point where all principal curvatures are >0. Similarly, for the outwards orientation, there is a point where all principal curvatures are <0. This follows from Example 14.3.

Theorem 30.5 (from topology; no proof). Let $M \subset \mathbb{R}^{n+1}$ be a connected compact hypersurface, with $n \geq 2$, and $\phi: M \rightarrow S^{n}$ a smooth map such that $D \phi_{y}: T M_{y} \rightarrow T S_{\phi(y)}^{n}$ is an isomorphism for all y. Then ϕ is bijective (one-to-one and onto).

Definition 30.6. A hypersurface M is convex if for all $y \in M$, the whole of M lies on one side of the hyperplane $y+T M_{y}$.

We already know from Example 14.2 that if M is compact connected and convex, its principal curvatures any any point are either ≥ 0 (for the orientation pointing inwards) or ≤ 0 (for the orientation pointing outwards).

Theorem 30.7 (Hadamard). Let $M \subset \mathbb{R}^{n+1}, n \geq 2$, be a compact connected hypersurface, whose Gauss curvature is everywhere nonzero. Then M is convex.

Remark 30.8. For a compact connected hypersurface $M \subset \mathbb{R}^{n+1}, n \geq 2$, the following are equivalent: (i) the Gauss curvature is everywhere nonzero; (ii) the Riemann curvature operator has only positive eigenvalues everywhere; (ii) the principal curvatures are either everywhere >0 or everywhere <0.

Lecture 31

Let $M \subset \mathbb{R}^{n+1}$ be a compact hypersurface, and $\phi: M \rightarrow \mathbb{R}$ a smooth function. We want to quickly sketch the definition of the integral of ϕ. Recall that the support $\operatorname{supp}(\phi) \subset M$ is the closure of the set of points where ϕ is nonzero. First suppose that ϕ has small support, which means that $\operatorname{supp}(\phi)$ is contained in the image of a partial parametrization $f: U \rightarrow M$, and write $\phi^{f}=\phi \circ f: U \rightarrow \mathbb{R}$. In that case,

$$
\int_{M} \phi(y) d \operatorname{vol}_{y} \stackrel{\text { def }}{=} \int_{U} \phi^{f} \sqrt{\operatorname{det}\left(G^{f}\right)} d x
$$

This makes sense because it's invariant under diffeomorphisms. For general ϕ, there are two equivalent ways: either write it as $\phi=\phi_{1}+\cdots+\phi_{m}$ where each ϕ_{i} has small support. Then,

$$
\int_{M} \phi(y) d \mathrm{vol}_{y} \stackrel{\text { def }}{=} \sum_{i=1}^{m} \int_{M} \phi_{i}(y) d \mathrm{vol}_{y} .
$$

Alternatively, suppose that M is decomposed into polytopes in the following sense. There is a collection of partial parametrizations $f_{i}: U_{i} \rightarrow M$ and polytopes $P_{i} \subset U_{i}(1 \leq i \leq m)$, such that $M=f_{1}\left(P_{1}\right) \cup \cdots \cup f_{m}\left(P_{m}\right)$, and with the interiors $f_{i}\left(P_{i} \backslash \partial P_{i}\right)$ pairwise disjoint. Then

$$
\int_{M} \phi(y) d \operatorname{vol}_{y} \stackrel{\text { def }}{=} \sum_{i=1}^{m} \int_{P_{i}} \phi^{f_{i}} \sqrt{\operatorname{det}\left(G^{f_{i}}\right)} d x
$$

where $\phi^{f_{i}}$ and $G^{f_{i}}$ are defined as before.
Lemma 31.1. Let f be a partial parametrization, and ν^{f} the associated Gauss normal. Then $\operatorname{det}\left(G^{f}\right)=\operatorname{det}\left(\partial_{x_{1}} f, \ldots, \partial_{x_{n}} f, \nu^{f}\right)^{2}$. In particular, in the case of a surface,

$$
\sqrt{\operatorname{det}\left(G^{f}\right)}=\left\|\partial_{x_{1}} f \times \partial_{x_{2}} f\right\| .
$$

Example 31.2. The volume of M is defined as $\operatorname{vol}(M)=\int_{M} 1 d \mathrm{vol}$.

Let M, \tilde{M} be hypersurfaces in \mathbb{R}^{n+1}, and $\phi: M \rightarrow \tilde{M}$ a smooth map. Suppose that both our hypersurfaces come with Gauss normal vectors $\nu, \tilde{\nu}$. We then $\operatorname{define} \operatorname{det}\left(D \phi_{y}\right)$ by writing $D \phi_{y}: T M_{y} \rightarrow T \tilde{M}_{\phi(y)}$ in terms of orthonormal bases of those vector spaces which are compatible with the orientation. This means:

Definition 31.3. In the situation above, let $\left(X_{1}, \ldots, X_{n}\right)$ be a basis of $T M_{y}$ such that $\operatorname{det}\left(X_{1}, \ldots, X_{n}, \nu(y)\right)>0$, and $\left(Y_{1}, \ldots, Y_{n}\right)$ a basis of $T \tilde{M}_{\phi(y)}$ such that $\operatorname{det}\left(Y_{1}, \ldots, Y_{n}, \tilde{\nu}(\phi(y))\right)>0$. Take the matrix A such that $D \phi_{y}\left(X_{i}\right)=$ $\sum_{j} A_{j i} Y_{j}$, and define $\operatorname{det}\left(D \phi_{y}\right)=\operatorname{det}(A)$. This is independent of the choices of bases.

Example 31.4. Consider the Gauss map $\nu: M \rightarrow \tilde{M}=S^{n}$, where S^{n} carries a Gauss normal vector $\nu(y)=y$. Then $\operatorname{det}\left(D \nu_{y}\right)$ is $(-1)^{n}$ times the Gauss curvature of M at y.

Lecture 32

Lemma 32.1. Let M, \tilde{M} be hypersurfaces, with Gauss maps $\nu, \tilde{\nu}$, and ϕ : $M \rightarrow \tilde{M}$ be a smooth map. Suppose that we have a parametrization f : $U \rightarrow M$ compatible with the orientation. Set $\phi^{f}=\phi \circ f: U \rightarrow \tilde{M} \subset \mathbb{R}^{n+1}$, and let G^{f} be the first fundamental form. Then for $y=f(x)$,

$$
\operatorname{det}(D \phi)_{y}=\frac{\operatorname{det}\left(\partial_{x_{1}} \phi^{f}, \ldots, \partial_{x_{n}} \phi^{f}, \tilde{\nu}\left(\phi^{f}(x)\right)\right)}{\sqrt{\operatorname{det}\left(G^{f}(x)\right)}} .
$$

Definition 32.2. Let M, \tilde{M} be compact hypersurfaces equipped with Gauss maps. Assume that \tilde{M} is connected. Let $\phi: M \rightarrow \tilde{M}$ be a smooth map. The degree of ϕ is defined as

$$
\operatorname{deg}(\phi)=\frac{1}{\operatorname{vol}(\tilde{M})} \int_{M} \operatorname{det}\left(D \phi_{y}\right) d \operatorname{vol}_{y}
$$

Proposition 32.3. Suppose that \tilde{M} is decomposed into $f_{i}\left(P_{i}\right)$ as in the previous lecture, where $f_{i}: U_{i} \rightarrow M$ are partial parametrization, and $P_{i} \subset U_{i}$ polytopes. Then

$$
\operatorname{deg}(\phi)=\frac{1}{\operatorname{vol}(\tilde{M})}\left(\sum_{i} \int_{P_{i}} \operatorname{det}\left(\partial_{x_{1}} \phi^{f_{i}}, \ldots, \partial_{x_{n}} \phi^{f_{i}}, \tilde{\nu}\left(\phi\left(f_{i}(x)\right)\right)\right) d x\right) .
$$

where $\phi^{f_{i}}=\phi \circ f_{i}$.
Lemma 32.4 (Sketch proof). Suppose that ϕ is bijective (one-to-one and onto), and that $\operatorname{det}(D \phi)$ is everywhere positive (or everywhere negative). Then $\operatorname{deg}(\phi)=1$ (or -1).
Theorem 32.5 (No proof). The degree is always an integer.

Lecture 33

Example 33.1. Let $M \subset \mathbb{R}^{3}$ be a torus, parametrized by

$$
f\left(x_{1}, x_{2}\right)=\left(\left(\cos x_{1}\right)\left(2+\cos x_{2}\right),\left(\sin x_{1}\right)\left(2+\cos x_{2}\right), \sin x_{2}\right)
$$

In this parametrization, the first fundamental form is

$$
G=\left(\begin{array}{cc}
\left(2+\cos x_{2}\right)^{2} & 0 \\
0 & 1
\end{array}\right)
$$

hence $\sqrt{\operatorname{det} G}=2+\cos x_{2}$ and

$$
\operatorname{vol}(M)=8 \pi^{2}
$$

Take the map $\phi: M \rightarrow M$ which wraps the torus twice around itself, sending $f\left(x_{1}, x_{2}\right)$ to $f\left(2 x_{1}, x_{2}\right)$. Then $\operatorname{det}(D \phi)=2$ everywhere, hence $\operatorname{deg}(\phi)=2$.

Now consider the map $\tilde{\phi}: M \rightarrow M$ wrapping the other way, which means that it sends $f\left(x_{1}, x_{2}\right)$ to $f\left(x_{1}, 2 x_{2}\right)$. With respect to the orthonormal basis $\left(\partial_{x_{1}} f /\left(2+\cos x_{2}\right), \partial_{x_{2}} f\right)$, we have

$$
D \tilde{\phi}_{f\left(x_{1}, x_{2}\right)}=\left(\begin{array}{cc}
\frac{2+\cos 2 x_{2}}{2+\cos x_{2}} & 0 \\
0 & 2
\end{array}\right),
$$

hence $\operatorname{det}(D \tilde{\phi})_{f\left(x_{1}, x_{2}\right)}=4 \frac{1+\cos x_{2}}{2+\cos x_{2}}$, and

$$
\int_{M} \operatorname{det}(D \tilde{\phi}) d \mathrm{vol}=\int_{[0,2 \pi] \times[0,2 \pi]} 4\left(1+\cos x_{2}\right)=16 \pi^{2},
$$

which means that again $\operatorname{deg}(\tilde{\phi})=2$. One can get the same integral formula a little more easily by using Proposition 26.3.

Since the degree is an integer, it is constant under smooth deformations of a map. By applying this idea (called the homotopy method), we get:
Lemma 33.2. Let $M \subset \mathbb{R}^{n+1}$ be a compact hypersurface with a Gauss map, and $\phi: M \rightarrow S^{n}$ a smooth map. If $\operatorname{deg}(\phi) \neq 0$, then ϕ is necessarily onto.

The result generalizes to targets other than S^{n}, and there is an even more general formula:
Theorem 33.3 (no proof). Let $M, \tilde{M} \subset \mathbb{R}^{n+1}$ be compact connected hypersurfaces with orientations, and $\phi: M \rightarrow \tilde{M}$ a smooth map. Suppose that $p \in \tilde{M}$ is a point with the following properties: (i) there are only finitely many $y_{1}, \ldots, y_{k} \in M$ such that $\phi\left(y_{i}\right)=p$; (ii) at each y_{i}, we have $\operatorname{det}\left(D \phi_{y_{i}}\right) \neq 0$. Then

$$
\operatorname{deg}(\phi)=\sum_{i=1}^{k} \operatorname{sign}\left(\operatorname{det}\left(D \phi_{y_{i}}\right)\right)
$$

Definition 33.4. Let M be a compact hypersurface with an orientation. The total Gauss curvature is

$$
\kappa_{\text {gauss }}^{\text {tot }}=\int_{M} \kappa_{\text {gauss }} d \mathrm{vol} .
$$

For even-dimensional hypersurfaces, the choice of orientation is actually irrelevant. If we take $\phi=\nu: M \rightarrow S^{n}$ to be the Gauss map, and orient S^{n} pointing outwards, then $\operatorname{det}\left(D \phi_{y}\right)=\operatorname{det}\left(-L_{y}\right)=(-1)^{n} \kappa_{\text {gauss }}$, hence:

Corollary 33.5. Let M be a compact hypersurface with an orientation. Then

$$
\kappa_{\text {gauss }}^{\text {tot }}=(-1)^{n} \operatorname{vol}\left(S^{n}\right) \operatorname{deg}(\nu) .
$$

In particular, the total Gauss curvature is always an integer multiple of $\operatorname{vol}\left(S^{n}\right)$.

Lecture 34

We already saw that if $M \subset \mathbb{R}^{3}$ is a torus, then $\kappa_{\text {gauss }}^{\text {tot }}=0$, irrespective of how it's embedded. To generalize this to other surfaces, we need to return to our discussion of moving frames.
Definition 34.1. Let $f: U \rightarrow \mathbb{R}^{3}$ be a surface patch, whose domain contains the origin. Let $\left(X_{1}, X_{2}\right)$ be a moving frame defined on $U \backslash\{0\}$. We say that the frame has a singularity of multiplicity $m \in \mathbb{Z}$ at 0 if it can be written as

$$
\begin{aligned}
& X_{1}=\cos (m \theta) \tilde{X}_{1}-\sin (m \theta) \tilde{X}_{2}, \\
& X_{2}=\sin (m \theta) \tilde{X}_{1}+\cos (m \theta) \tilde{X}_{2}
\end{aligned}
$$

where θ is the angular coordinate, and $\left(\tilde{X}_{1}, \tilde{X}_{2}\right)$ is a moving frame which extends smoothly over $x=0$. Passing to the matrices whose column vectors are the X_{k} and \tilde{X}_{k}, one can write the relation as

$$
X=\tilde{X} \exp (m \theta J),
$$

where $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ as usual.

Let X be a moving frame with a singularity of order m. Last time we considered the vector field

$$
\alpha=\left(\left(A_{1}\right)_{12},\left(A_{2}\right)_{12}\right): U \backslash\{0\} \rightarrow \mathbb{R}^{2},
$$

which was such that $\operatorname{curl}(\alpha)=\kappa_{\text {gauss }} \sqrt{\operatorname{det}(G)}$. A computation shows that

$$
\alpha=m\left(x_{2},-x_{1}\right) /\|x\|^{2}+\text { something bounded in } x,
$$

and therefore:
Lemma 34.2.

$$
\lim _{\rho \rightarrow 0} \oint_{|x|=\rho} \alpha=-2 \pi m .
$$

Definition 34.3. Let $M \subset \mathbb{R}^{3}$ be a compact surface. A moving frame with singularities is given by a finite set of points $\left\{p_{1}, \ldots, p_{k}\right\}$ on M, together with maps $Y_{1}, Y_{2}: M \backslash\left\{p_{1}, \ldots, p_{k}\right\} \rightarrow \mathbb{R}^{3}$ which at each point y form a positively oriented orthonormal basis of $T M$, and such that around each p_{k} there is a partial parametrization in which $Y_{j}=D f\left(X_{j}\right)$ for some frame with singularity of order $m\left(p_{i}\right)$ at p.

Theorem 34.4 (no proof). Moving frames with singularities always exist. Moreover, for any choice of such frame, the sum $\sum_{i} m\left(p_{i}\right)$ is the same. It agrees with a topological invariant of M, called the Euler characteristic $\chi(M)$.

The torus has Euler characteristic 0. More interestingly, the sphere has Euler characteristic 2.

Corollary 34.5 (Gauss-Bonnet theorem; sketch proof). For any compact surface $M \subset \mathbb{R}^{3}, \kappa_{\text {gauss }}^{\text {tot }}=2 \pi \cdot \chi(M)$.

Corollary 34.6. The Gauss map ν of a compact surface $M \subset \mathbb{R}^{3}$ satisfies $\chi(M)=2 \operatorname{deg}(\nu)$. In particular, $\chi(M)$ is always even.

There is also a direct topological proof of this, avoiding curvature. Note that there exist abstract compact surfaces (compact topological spaces locally homeomorphic to \mathbb{R}^{2}) with odd Euler characteristic, but those do not admit orientations, hence cannot be realized inside \mathbb{R}^{3}.
Corollary 34.7 (sketch proof). For any compact surface $M \subset \mathbb{R}^{3}, \int_{M}\|\kappa\| d v o l_{M} \geq$ 4π.

Lecture 35

The Euler characteristic $\chi(M)$ is defined for all sufficiently nice topological spaces, and in particular for compact hypersurfaces M of any dimension. It is an intrinsic quantity (a homeomorphism invariant). We do not give the definition here, except to mention that if M admits a moving frame without any singularities, then the Euler characteristic is zero.
Theorem 35.1 (Hopf; no proof). Let $M \subset \mathbb{R}^{n+1}$ be a closed hypersurface of even dimension n, and $\nu: M \rightarrow S^{n}$ a Gauss map. Then $\operatorname{deg}(\nu)=\chi(M) / 2$.
Corollary 35.2 (Generalized Gauss-Bonnet). In the same situation as above, $\kappa_{\text {gauss }}^{\text {tot }}=\chi(M) \operatorname{vol}\left(S^{n}\right) / 2$.

No such result exists for odd n, which means that $\kappa_{\text {gauss }}^{\text {tot }}$ is not intrinsic in those dimensions (it depends on how the hypersurface sits in \mathbb{R}^{n+1}).
Definition 35.3. A compact combinatorial surface consists of a finite collection $\left\{P_{i}\right\}$ of flat convex polygons in \mathbb{R}^{3}, with the following properties: any two P_{i} are either disjoint or share a common edge; (ii) any edge of any given P_{i} belongs to precisely one other $P_{j}, j \neq i$.

We usually think of $M=\bigcup_{i} P_{i}$ as the surface. Write $\left\{E_{j}\right\}$ for the set of edges, and $\left\{V_{k}\right\}$ for the set of vertices. The combinatorial Gauss map assigns to each P_{i} a normal vector $\nu\left(P_{i}\right) \in S^{2}$, uniquely determined by the requirement that it should point outwards (if M is connected, this means pointing into the component of $\mathbb{R}^{3} \backslash M$ which is not bounded). For each edge E_{j} we then get a great circle segment $\nu\left(E_{j}\right) \subset S^{2}$ connecting the normal vectors associated to its endpoints. Similarly, for each vertex V_{k} we get a "region" $\nu\left(V_{k}\right) \subset S^{2}$ whose boundaries are the great circle segments associated to the edges adjacent to each vertex. The combinatorial Gauss curvature is the spherical area

$$
\kappa_{\text {gauss }}^{\text {comb }}\left(V_{k}\right)=" \operatorname{area}\left(\nu\left(V_{k}\right)\right) " .
$$

This has to be approached with some care, since the "region" can have selfoverlaps, and the area should be counted with sign. In the case of a convex vertex, one really gets the ordinary positive area. More generally, one can use some spherical trigonometry to get

$$
\kappa_{\text {gauss }}^{\text {comb }}\left(V_{k}\right)=2 \pi-\sum \text { angles of corners adjacent to our vertex, }
$$

where the angles are counted with signs. Define the Euler characteristic to be $\chi(M)=$ \#polygons - \#edges + \#vertices (for a polygonal approximation of a smooth surface, this agrees with our previous definition). By applying spherical trigonometry, one obtains
Theorem 35.4 (combinatorial Gauss-Bonnet; sketch proof). $\sum_{k} \kappa_{\text {gauss }}^{\text {comb }}\left(V_{k}\right)=$ $2 \pi \chi(M)$.

