This quiz is open-book. There are four problems, and each is worth 25 points.
Problem 1 (25 points): This problem considers six transfer functions. These are

$$
\begin{gather*}
H_{1}(z)=\frac{20(z-0.95)}{z-1} \tag{1}\\
H_{2}(z)=\frac{z-1}{z-0.9} \tag{2}\\
H_{3}(z)=\frac{z-0.9}{10(z-0.99)} \tag{3}\\
H_{4}(z)=\frac{10(z-0.99)}{z-0.9} \tag{4}\\
H_{5}(z)=\frac{1-2 r_{1} \cos \Omega_{1}+r_{1}^{2}}{z^{2}-z 2 r_{1} \cos \Omega_{1}+r_{1}^{2}} \tag{5}
\end{gather*}
$$

where $r_{1}=0.995$ and $\Omega_{1}=0.1$.

$$
\begin{equation*}
H_{6}(z)=\frac{\left(1-2 r_{1} \cos \Omega_{1}+r_{1}^{2}\right)\left(z^{2}-z 2 r_{2} \cos \Omega_{2}+r_{2}^{2}\right)}{\left(z^{2}-z 2 r_{1} \cos \Omega_{1}+r_{1}^{2}\right)\left(1-2 r_{2} \cos \Omega_{2}+r_{2}^{2}\right)} \tag{6}
\end{equation*}
$$

where $r_{1}=0.995$ and $\Omega_{1}=0.1$, as before, and $r_{2}=0.9995$ and $\Omega_{2}=0.01$.
On two pages attached to the end of this exam are six step responses and six frequency response (Bode) plots. These plots are labeled I, II, III, IV, V, VI; and A, B, C, D, E, F; respectively. For each of the transfer functions above, indicate which are the corresponding step and frequency responses. Your answer should take the form of a number from 1-6 for each transfer function followed by a capital letter indicating the corresponding step response, followed by a Roman numeral indicating the corresponding frequency response. Wrong answers will count as zero; no partial credit will be given in this problem.

Problem 2 (25 points): Consider a continuous time filter:

$$
H(s)=\frac{10(s+1)}{(0.5 s+1)(0.05 s+1)}
$$

a) Use the forward Euler approximation to map this to an approximating discrete-time system for $\mathrm{T}=0.1 \mathrm{sec}$.
b) What is the approximating difference equation?
c) Plot the poles in the z-plane. Comment on the quality of the approximation.

Problem 3 (25 points): A given linear, time-invariant (LTI) system H has an impulse response $\mathrm{s}(\mathrm{k})$ which is shown below:

Note that the only non-zero values of $\mathrm{s}(\mathrm{k})$ are at $\mathrm{k}=1,3,4,5$.
a) Use any convenient method to determine the difference equation for this system in terms of an input $\mathrm{e}(\mathrm{k})$ and an output $\mathrm{y}(\mathrm{k})$. Please explain your approach.
b) Draw a minimum block diagram realization of the system from the input to the output.
c) Now suppose that the system input is a unit step, i.e., $\mathrm{e}(\mathrm{k})=u_{s}(\mathrm{k})$. Using whatever approach you find most efficient, write an expression for the resulting output $\mathrm{y}(\mathrm{k})$ which is valid for all k .
d) Find the z-transform $S(z)$ of $s(k)$ as given in the figure above. How is this transform related to the the system transfer function $\mathrm{H}(\mathrm{z})$?

Problem 4 (25 points): A block diagram for a system with a varying plant model and a fixed lead compensator is shown below:

$$
G_{c}(z)=K \frac{z-0.5}{z-0.2}
$$

Make reasonably accurate root locus plots for $K \geq 0$.
a) $G_{p}(z)=\frac{1}{(z-1)^{2}}$
b) $G_{p}(z)=\frac{1}{\left(z^{2}-2 R_{0} \cos \left(\Omega_{0}\right) z+R_{0}^{2}\right)(z-1)}$ where $\Omega_{0}=\frac{\pi}{4}, R_{0}=0.9$
c) $G_{p}(z)=\frac{z^{2}-2 R_{1} \cos \left(\Omega_{1}\right) z+R_{1}^{2}}{\left(z^{2}-2 R_{2} \cos \left(\Omega_{2}\right) z+R_{2}^{2}\right)\left(z^{2}-1\right)}$ where $R_{1}=0.99, \Omega_{1}=\frac{\pi}{3}, \Omega_{2}=\frac{32}{100} \pi, R_{2}=R_{1} \frac{\cos \left(\Omega_{1}\right)}{\cos \left(\Omega_{2}\right)}$

