Problem 2 (15 points): The Bode plot of a stable discrete-time filter is shown below.

a) What is the transfer function $G(z)$ of this filter? Explain how you estimated the filter transfer function from the given Bode plot. Sketch the filter poles and zeros on the zplane.

Problem 3 (20 points): This problem considers six transfer functions. These are

$$
\begin{gather*}
H_{1}(z)=\frac{z-0.95}{z} \tag{1}\\
H_{2}(z)=\frac{z-1}{z-0.8} \tag{2}\\
H_{3}(z)=\frac{10(z-0.98)}{z-0.9} \tag{3}\\
H_{4}(z)=\frac{z-0.9}{10(z-0.98)} \tag{4}\\
H_{5}(z)=\frac{1-2 r_{1} \cos \Omega_{1}+r_{1}^{2}}{z^{2}-z 2 r_{1} \cos \Omega_{1}+r_{1}^{2}} \tag{5}
\end{gather*}
$$

where $r_{1}=0.99$ and $\Omega_{1}=0.2$.

$$
\begin{equation*}
H_{6}(z)=\frac{\left(1-2 r_{1} \cos \Omega_{1}+r_{1}^{2}\right)\left(z^{2}-z 2 r_{2} \cos \Omega_{2}+r_{2}^{2}\right)}{\left(z^{2}-z 2 r_{1} \cos \Omega_{1}+r_{1}^{2}\right)\left(1-2 r_{2} \cos \Omega_{2}+r_{2}^{2}\right)} \tag{6}
\end{equation*}
$$

where $r_{1}=0.99$ and $\Omega_{1}=0.2$, as before, and $r_{2}=0.99$ and $\Omega_{2}=0.05$.
On two pages attached to the end of this exam are six step responses and six frequency response (Bode) plots. These plots are labeled A, B, C, D, E, F; and I, II, III, IV, V, VI; respectively. For each of the transfer functions above, indicate which are the corresponding step and frequency responses. Your answer should take the form of a number from 1-6 for each transfer function followed by a capital letter indicating the corresponding step response, followed by a Roman numeral indicating the corresponding frequency response. Wrong answers will count as zero; no partial credit will be given in this problem.

