
Laboratory Assignment 1

Sampling Phenomena


2.171 Analysis and Design of Digital Control Systems 

1 Main Topics 

• Signal Acquisition 

• Audio Processing 

• Aliasing, Anti-Aliasing Filters 

• Digital Filter Design and Implementation 

2 Equipment 

• Personal Computer with DS1102 (dSPACE, Inc.) Controller Card 

• Matlab, Simulink, Real-Time Workshop, Real-Time Interface, and Control Desk Software 

• Digital Storage Oscilloscope 

• Breadboarding System with Analog Electronics 

• Earphones 

Function Generator • 

Music Source • 

3 Introduction 

This set of exercises familiarizes you with the laboratory hardware and shows you how to use the 
hardware to perform real-world tasks such as acquiring signals and processing them. We also ask you 
to look at the non-idealities of these operations. You will look at the effects of sampling on signals 
from the generator and on music. You will also study quantization. Finally, you will implement first-, 
second-, and higher-order discrete-time filters. These filters will be designed from the viewpoint of 
approximating continuous-time analog filters and directly as digital filters. 

4 Aliasing and Smoothing 

4.1 Background and Equipment 

In this lab, you will use sine waves and music as a source for signal processing. For the music source, 
you can provide your own, or play music out from the computer at each station. When processing a 
signal you will want to use nearly the full range of the A/D converters, so as to utilize the maximum 
number of quantization levels. The signal from the most music sources is at the 100 mV level, which 
is much lower than the full-scale ±10 V range of the A/D’s. Thus you need to use an amplifier to 
increase this signal to the level of volts. We have designed an appropriate interface circuit for you as 
shown in Figure 1. 

1 



+

+

Sig.Gen.

Audio

Scope Input

DAC 1

Scope Output

Anti-Aliasing Filter

Smoothing Filter

ADC 1

10K

C

100K

LM741

470
22K

22K

LM741

C

 0.1 uf

 0.1 uf
3

2

4

6

7

+15 V

-15 V

 0.1 uf

 0.1 uf
3

2

4

6

7

+15 V

-15 V

Vin Vad

Vda
Vout

-

-

Figure 1: Anti-aliasing and smoothing filter circuit diagram. 

We also want to be able to listen to the audio signals. Headphones have been provided at each 
station for this purpose. Since the DAC cannot supply sufficient current to drive these headphones 
directly, we have built an interface amplifier which can supply the headphone current. This amplifier 
is also shown in Figure 1. Both of these circuits have been pre-assembled for you on the electronic 
protoboard. 

The lab explores the use of anti-aliasing and smoothing filters. The anti-alias filter attempts to 
remove high frequencies at the input before they reach the A/D. This is implemented by the input 
amplifier. The smoothing filter attempts to remove the high-frequencies associated with the staircase 
output from the D/A. This is implemented in the output amplifier which drives the headphones. 

The anti-aliasing filter has a transfer function of 

Vad (s) = 
−Rf 1 

(1)
Vin (s) R1 

· 
Rf Cs + 1 

= 
−10 

. (2)
105C + 1

This is a first-order filter with a low-frequency gain of -10, and a -3 dB frequency set by the capacitor 
value. 

The transfer function for the smoothing filter is similar to that of the anti-aliasing filter. It has a 
low-frequency gain of 1, and the capacitor value sets the cutoff frequency. 

4.2 Experimental Procedure 

a) Use Simulink and rtilib to create a model like that shown in Figure 2. Set the sampling rate 
by selecting Simulation:Parameters from the simpleio menu bar. Set the options to a fixed-
time-step solver with a step size of 0.0001. Close the window, save the file again, and select 
Tools:RTW Build. This step converts the block diagram into C-code, compiles this code, and 
downloads the executable to the DSP. At the end of this step, the DS1102 should be reading from 
the A/D and writing to the D/A at 100 µs intervals. 

b) We will now examine the effect of aliasing. Aliasing occurs whenever a signal is sampled at a rate 
less than twice the maximum frequency contained in the signal. Aliasing is easily demonstrated 

2




Figure 2: Simulink block diagram simpleio.mdl used to demonstrate aliasing effects. 

using a sinusoidal signal source and sampling at less than twice its frequency. More complex 
effects occur when we sample a music signal. Pass a sinusoidal waveform from the signal generator 
through the anti-aliasing filter, and into A/D Channel 1. Initially run with the capacitors switched 
out, and thus no filtering. What effects do you observe in the output waveform? Try varying the 
input frequency and look at the frequency content of the output waveform. You may want to try 
changing the sample rate and recompiling to examine that effect. You should clearly see aliasing 
when the input frequency is higher than half the sampling rate. 

c) Switch in the anti-aliasing and/or smoothing filters. Investigate the effect that these have. We 
want you to both observe the waveforms on the scope and to listen to the outputs and inputs 
on the headphones. Try to correlate what you see on the scope with what you hear on the 
headphones. Notice the beating phenomenon which occurs with the input frequency near half 
the sampling frequency. 

d) Sinusoids are a simple waveform. Music is much more complex, but allows us to see/hear many 
effects simultaneously. Switch the input of your system to the music signal, and repeat the 
experiments above to understand the effects of sampling on the music signal. The music enters 
the system through the first BNC connector on your board, and the function generator enters 
through the second BNC. Move the wire to switch the input between them. Note the serious 
distortions introduced by aliasing when sampling audio signals at low sample rates. Look at the 
traces on the oscilloscope and listen to the music on the earphones as you lower the sampling 
rate; what effects do you see and hear? This gives you an appreciation for the effect of aliasing 
on real-world signals. What are the effects of the anti-alias and smoothing filters? 

5 Quantization 

5.1 Background and Equipment 

Every digital system discretizes an analog signal in both time and amplitude. Only fixed levels (quanta) 
are permitted in a digital system. The DSP board used in this course has 16-bit A/D’s on channels 
1 and 2, and 12-bit A/D’s on channels 3 and 4. All four of the D/A channels have 12-bit resolution. 

3


Image removed due to copyright restrictions.



Figure 3: Simulink block diagram quantize.mdl used to demonstrate aliasing effects. 

For the 12-bit channels, the operating voltage range of ±10 volts is quantized into 4096 different levels, 
which corresponds to 4.88 mV per quanta. For the two 16-bit A/D’s the signals are quantized into 
65536 levels, which corresponds to 0.305 mV per quanta. The software interface to the DSP board 
also takes the convention that the analog range of ±10 V is mapped to a numerical range of ±1 in the 
block diagram. Be sure to note this scaling of 10:1! 

5.2 Experimental Procedure 

e) Create a model with quantization as shown in Figure 3. The quantization block is located in the 
Simulink:Nonlinear library, and using it allows us to effectively increase the quanta size (thus 
decreasing the resolution). To quantize to 2N levels, double-click the quantization block and 
set the level to 1/2N−1 . Note that this value is chosen in light of the internal full range of ±1 
corresponding to analog signals of ±10 V. As a starting point, let N = 4. Set the sample time (in 
Simulation:Parameters) to 0.0001 s with a fixed-time solver. Save the file as quantize.mdl, 
and download with Tools:RTW Build. 

f) Choose the quantization bits N at several settings ranging from 2 to 12, recompiling after each 
change. The resulting distortion due to quantization when using fewer bits can be appreciated 
by listening to and looking at the quantized and analog signals. Remember that you have to keep 
the magnitude of the analog signal large enough to be able to see all the levels, but not so large 
as to be entering saturation. Use the function generator as the source initially and perform the 
experiment with sinusoidal signals. Observe the effect of increasing and decreasing the amplitude 
of the sinusoid. You should able to count off 4 levels for a 2 bit quantization level and 16 levels 
for a 4 bit quantization level on the oscilloscope. Try the same experiment with the music source 
instead of the waveform generator. Note the deterioration of sound quality as fewer bits are used. 

6 Discrete-time filtering 

6.1 First-order discrete-time filter 

Discrete-time filters are described by difference equations in much the same way that continuous-time 
filters are represented by differential equations. The discrete-time equivalent of a continuous-time filter 

4


Image removed due to copyright restrictions.



can be obtained by various approximations to the derivatives. A common approximation is by the 
forward Euler rule. Let xa(t) be an analog signal and its value at the kth sampling interval be given 
by x(k) = xa(kT ) where T is the sampling period. The Euler rule then approximates the derivative as 

ẋa(kT ) ≈ 
xa((k + 1)T ) − xa(kT ) 

T 

ẋ(k) = 
x(k + 1) − x(k) 

(3)⇒ 
T 

xa(t) at t = kT . 
Let us now apply the above rule to a first-order unity-gain continuous-time filter given by the 

transfer function 
Y (s) b 

= (4)
U(s) s + b 

The corresponding differential equation is then given by 

sY (s) + bY (s) = bU(s) 
ẏa(t) + bya(t) = bua(t) (5)⇒ 

As before, define y(k) = ya(kT ) and u(k) = ua(kT ). Then the difference equation which approximates 
this via the forward difference is given by 

y(k + 1) − y(k)
+ by(k) = bu(k)

T 
⇒ y(k + 1) − y(k) = bTu(k) − bTy(k) 
⇒ y(k + 1) = bTu(k) + (1 − bT )y(k) (6) 

Equation 6 gives the difference equation in a form suitable for implementation in a computer program. 
That is, we can calculate the present value of y with knowledge of its previous value and of the previous 
value of the input u. 

We can also specify this discrete-time filter via its transfer function. Introducing the z-transform 
variable z to represent a unit forward shift in discrete time, we can rewrite the difference equation 
above in transfer function form as 

bT 
H (z) = (7) 

z − (1 − bT ) 
where Y (z) = H (z) U (z). 

The above system can be implemented in Simulink by using a discrete-time transfer function block 
with num = [0 bT ] and den = [1 −(1 − bT )]. In discrete system representation, it is good practice to 
enter the numerator and denominator polynomials as equal length vectors, padded with zeros as needed. 
This avoids confusions which can occur due to the use of z or z−1 in transfer function polynomials. For 
instance, in the signal processing literature, it is common to use H(z−1), whereas in the controls area 
it is more standard to use H(z). We recommend H(z), but with the zero padding mentioned above, 
both forms are equivalent. 

h) Build and run a filter which implements this discrete-time transfer function. 

i) Examine the effect of the digital filter on sinusoidal input signals from the function generator. 
Initially, switch out the analog filter capacitors so that we do not have any anti-aliasing or 
smoothing effects. Initially, set T = 0.0001 and b = 1000, and thus the resulting first-order 
digital filter should approximate a continuous-time filter with a time contant of 1 ms. Using the 
scope, look at a sinusoidal waveform before and after the digital filter. Does it have the response 
you expect? Look at the response for inputs at frequencies higher than the Nyquist (i.e. above 
5000 Hz). You should see the amplitude of the output grow again. Can you use aliasing to 
explain this effect? 

5 



j) Change the output of the function generator to a square wave, and adjust the scope to display 
the step response of the digital filter. While keeping the sampling rate fixed, change the value 
of b and examine the step response of the digital filter. At low values of b, the response should 
approximate a continuous system. Examine the shape of the response as you raise b. At what 
value of b does the response depart significantly from the continuous-time response? At what 
value of b does the response become unstable? Note the z-plane pole location for each value of 
b so that you can develop an intuition for the z-plane. Be sure you understand the response 
characteristics in light of the z-plane pole location. 

6.2 Second-order discrete-time filter 

We will now create a discrete-time approximation to a second-order continuous-time system. A unity-
gain second-order continuous-time filter can be described by the transfer function 

Y (s) ωn 
2 

= . (8)
U(s) s2 + 2ζωns + ωn 

2 

We will next apply the forward Euler rule to derive a corresponding transfer function, 

ω2 T 2 

H (z) = n (9) 
z2 + (2ζωnT − 2) z + (T 2ωn 

2 − 2ζωnT + 1) 

Please check this derivation to be sure that you understand it before proceeding further. The experi
mental procedure for this section of the lab is described as follows. 

k) Create a model which implements this filter with a 10 kHz sampling rate. 

l) Look at the filter output when using the function generator for a sinusoidal input. Does the fre
quency response match your expectations? At frequencies past the Nyquist, can you see the 
increasing amplitude (as in the first-order system)? Change the function generator to produce a 
square wave output, and look at the step response on the scope. How well does the response cor
respond to the modeled continuous-time system? Look at different values of ζ and ωn. How does 
the response correspond with the location of the discrete-time poles? Determine a relationship 
between ζ, ωn, and T for stability. Compare this with the mapping viewpoint of the approximate 
filter design. How does the approximation of the second order filter hold up for large ωn or small 
values of ζ ? 

6.3 Other discrete-time filters 

Experiment with additional discrete-time transfer functions in order to understand the effect of 
pole and zero locations in the z-plane. 

m) Take a look at the effect of pole and zero locations in the transfer function 

b0z
2 + b1z + b2

H (z) = . (10) 
a0z2 + a1z + a2 

n) Design some interesting finite impulse response (FIR) filters, and implement these on the real-time 
system. Compare the step and frequency responses with that predicted in Matlab, and explain 
these responses in terms of the pole and zero locations. A separate handout on FIR filters will 
be available shortly. 

6 


