
� 

2.171 Analysis and Design of Control Systems Prof. David Trumper 

Final Exam 

Problem 1: This problem considers a system for which the impulse response h(k) is 
equal to 1 for N = 0, 1, ..., N − 1, and equal to zero elsewhere. That is, 

N−1

h(k) = δ(k − i) (1) 
i=0 

The system has an input u and an output y. 

a) For this system, solve for the transfer function H(z). Clearly show your 
reasoning. 

b) Find a difference equation in terms of u and y which has this impulse 
response h(k). Explain why this type of system is often referred to as an 
N-point averager. (It may also be called a box-car filter, because of the 
shape of the impulse reponse.) 

c) Show that the frequency response of this system is given by 

H(ejΩ) = 
sin(NΩ/2) 

e−jΩ(N−1)/2 (2)
sin(Ω/2) 

Sketch a Bode plot for this system for the value N = 4. Use a linear 
frequency and magnitude axis, and sketch from Ω = 0 to Ω = π. Be sure 
to include both magnitude and phase, and to label the axes with numerical 
values. 

d) For N = 4, at what frequencies is the frequency response equal to zero? 
Explain why this occurs from a time-domain perspective for an input cos Ωk. 
Support your argument with relevant sketches. 

Problem 2: This problem considers a continuous-time system with a transfer function 

2a
H(s) = . (3) 

s2 − a2 

This might model the linearized behavior of a magnetic suspension. Note 
that both poles are real-axis, with one in the right-half plane. 

a) Calculate the zero order hold equivalent Heq(z) for this system with a 
sampling time T . 

1 



2.171 Analysis and Design of Control Systems Prof. David Trumper 

b) Show that for a = 40, T = 0.001 sec, Heq (z) becomes 

Heq (z) = 
8 × 10−4(z + 1) 

. (4) 
z2 − 2.0016z + 1 

Please use this transfer function for all subsequent work even if your answer 
does not agree with it. Clearly state if this is the case, and then use the 
answer we are providing above. Plot the poles and zeros of this system on 
the z-plane. Do the poles map as z = esT ? 

c) Sketch a Bode plot for Heq(z). Use care in handling the pole outside the 
unit circle. Be sure to label and scale the axes. Hint: The magnitude 
will be the same as for a system with coincident poles on the real axis 
at the location of the single pole inside the unit circle. The phase will 
however be different. You can also use a few test frequencies to guide you 
in sketching. Does the DC gain agree with that of the continuous time 
system? What is the high frequency gain (z = −1)? 

d) Sketch a root locus for this system imbedded in a unity-negative-feedback 
loop with a proportional controller G(z) = G0. Will any value of G0 

stabilize the system? 

e) Develop a Nyquist stability analysis for this system under the proportional 
control above, and describe how it confirms the root locus analysis in d). 
It will be easiest to choose a z-plane contour which does not intersect the 
real-axis pole outside the unit circle in order to avoid constructing detours. 
Note that it is OK for the contour to intersect with a zero, since the loop 
gain magnitude is finite there. 

Clearly show both your chosen z-plane contour and the resulting GH-
plane image. Label corresponding points on the contours as A, B, C, 
etc. Also clearly indicate how you handle the presence of the unstable 
loop-transmission pole. 

f) Design a lead compensator for this system of the form 

G(z) = 
K(z − α) 

(5) 
z 

in order to stabilize the loop with a phase margin greater than 45 de
grees at as high a crossover frequency as possible. Clearly indicate your 
design approach. What are the resulting values of phase margin φm, and 
crossover frequency Ωc? For what range of gains K will your design be 
stable? 

g) Sketch a root locus for your design above assuming that K varies from 
0 to infinity. Estimate the point at which the locus last crosses the unit 
circle, and any other features of the locus which you find pertinent. Do 
not explicitly calculate breakaway and reentry points 
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