
Laboratory Assignment 2

Direct Discrete-Time Frequency-Domain-Based Design


2.171 Analysis and Design of Digital Control Systems

Department of Mechanical Engineering

Massachusetts Institute of Technology


Cambridge, MA 02139

Due: In checkoffs on Friday, Ocotober 27, 2006


1 Main Topics 

Servomotor control. • 

•	 Proportional and Proportional-Integral velocity control via approximation to continuous-time 
systems. 

•	 Proportional-Integral-Derivative position control via continuous-time approximation. 

•	 Integral anti-windup. 

•	 System identification via frequency response testing. 

•	 Servomotor control via loop shaping (lead and lag compensation). 

•	 Effect of sensor quantization on servo performance. 

2 Equipment 

•	 Personal Computer with DS1102 (dSPACE, Inc.) Controller Card 

•	 Matlab, Simulink, Real-Time Workshop, Real-Time Interface 

•	 Digital Storage Oscilloscope 

•	 Breadboarding System with Analog Electronics


Function Generator
• 

Servomotor with Tachometer and Potentiometer • 

•	 Linear Power Amplifier 

1




3 Lab Overview 

In this laboratory, we study digital control of a D.C. servomotor. Each station is equipped with a 
D.C. motor having an integral tachometer to measure angular velocity, a single turn potentiometer 
to measure angular position, and a power amplifier to drive the motor. First, we develop a model 
for the motor. This model is then used to design velocity and position controllers. For the purpose 
of this lab, controller design is done using discrete time methods and equivalents. 

Initial experiments focus on velocity control. We implement a proportional velocity controller first. 
With this control scheme, we observe steady-state errors. Also, we observe that increasing gain 
reduces the steady-state errors. Next we implement a PI velocity controller to eliminate these 
steady-state errors. Problems with integral windup are observed and an anti-windup scheme is 
implemented. We meet natural frequency and damping ratio specifications by designing a continous
time controller which is mapped into discrete-time. 

Finally, we implement lead-lag position control of a servomotor. 

Some of the non-idealities that you will see in this experimental hardware include an internal 
700 Hz resonance of the servomotor (under velocity control), and the discontinuity that occurs at 
the ±10 V transition in the potentiometer (under position control). 

4 Power Amplifier Connections 

Each station is equipped with a D.C. motor and a power amplifier. As shown in Figure 2, the power 
amplifier provides a voltage gain of 2 for the signal from the DAC. The power amplifier connections 
have already been made for you. 

Note: The power amplifiers have an absolute maximum of ±25 volts. Irreversable 
damage will occur above this level. The supplies in the lab can provide more than 
±30 volts and thus are capable of destroying the amplifier. Therefore, before shutting 
off or turning on the supply always set it to 0 volts on both sides. As connected, the 
right-hand supply provides +Vcc at its positive terminal, and the left-hand supply provides −Vcc 

at its negative terminal. Common is taken from the jumpered center connections (the negative 
terminal of the right-hand supply and/or the positive terminal of the left-hand supply). 

Set the current limits on both supplies to the maximum. Whenever you are about to turn on the 
supply, first adjust both voltage controls to zero. Set the right-hand meter to monitor voltage. Set 
the left-hand meter to measure current. Then power up the supply. At this point you may increase 
the supply voltage up to the desired ±17 volt level. (The reason for choosing this voltage is that 
it is comfortably below the amplifier’s absolute maximum rating of ±25 volts.) We have pre-wired 
the amplifier to the supply for you as shown in Figure 1. 

2




5 

Left-hand supply Right-hand supply

Bare
Wire

Black Red

Common¡Vcc +Vcc

¡ ¡ ++

Figure 1: Amplifier/Supply Connections 

The negative and positive terminals of the power op-amp are brought out on green and red wires 
respectively. The board ground plane is also brought out on a black wire for connection on the 
low-power side. On the high-power side, we have brought out the power supplies with +Vcc on a 
red wire, −Vcc on a black wire, and common on an unisulated wire. The amplifier output is brought 
out on a yellow wire along with another connection to common on a black wire. 

D.C. Motor model 

Each station has a D.C. motor and a power amplifier. Please follow the above precautions before 
powering up your setup. The D.C. motor has a tachometer to measure velocity and a potentiometer 
to measure angular position. The motor parameters are: 

R = 7.5 Ω 

L = 5.55 mH 
L 

τe = = 0.7 ms ⇒	
R 

KT = 0.024 Nm/A 

J = 1.5 × 10−5 Kgm2 (all loads referred to motor shaft) 
Ktach ≈ 0.023 V/rad/sec 

Vpp
Kpot = 

(gear ratio) 
≈ 0.5 V/rad (of motor) 

2π · 
No. of teeth on pinion = 36 

No. of teeth on driven gear = 216 

Gearing ratio, N = 6 
JR ⇒ τm = 
KT 

2 ≈ 200 ms 

ωm(s) 1 
=	 (1)⇒ 

Vm(s) KT (τms + 1) 

In this derivation, we are assuming that the motor inductance is low enough to be ignored, i.e., L �


3




0. Substituting numbers gives the transfer function of this system from applied motor voltage Vm 

to motor angular velocity ωm as 
ωm(s) 41.7 

= . (2)
Vm(s) 0.2s + 1

+

- -

+DAC1
AGND

ADC1

power amplifier

tachometer

pinion flywheel

DC motor

gear

CCW

CW

potentiometer, 5 kΩ
function
generator

wiper

10 kΩ

+15V

-15V

1.5 kΩ

u

r

+
-

+ -

10 kΩ

1.5 kΩ

vt

AGND

ADC2
vp

AGND

ADC3
AGND

return to
power amp
ground

connection to
power amp
ground

R

C

anti-aliasing filter

Figure 2: Connections for the D.C. motor setup including an anti-aliasing filter with the values 
R = 100 kΩ and C = 0.1 µf. 

The connection of the motor setup is shown in Figure 2. For the purposes of this lab, the reference 
signal r is generated by the function generator. In your pre-wired lab kits, the function generator is 
connected to AD channel 3, the tachometer signal connects to AD channel 1, and the potentiometer 
signal connects to AD channel 2. The output of DA channel 1 connects to the input of the power 
amplifier. 

In order to match the A/D input range, we connect the potentiometer to operate at a little less 
than ±10 volts (±9.4 V). To do this, we use the ±15 volt power source from the protoboard, and 
use a pair of resistors to reduce the voltage to the desired value. The value of the potentiometer 
resistance is 5 kΩ, thus the pair of voltage dropping resistors are chosen as 1.5 kΩ. These resistors 
are soldered in place on the motor setup, so you don’t need to supply them on your protoboard. 

The complete block diagram contains the power amplifier, motor, tachometer, and potentiometer 
using the parameters given above. Throughout this lab, we will drive the motor with the power 
amp configured for a voltage gain of 2. 

The complete system transfer functions include the sensor gains in addition to the physical con

4




stants. Reducing the system block diagram brings us to the to the transfer function from DAC 
output u to tachometer voltage vt, 

Vt (s) 2Ktach/KT 1.92 
= = (3)

U (s) τms + 1 0.2s + 1 

Similarly, we arrive at the relationship between the DAC output u and the potentiometer voltage 
vp, 

Vp (s) 2Kpot/KT 41.7 
= = (4)

U (s) s (τms + 1) s (0.2s + 1) 

6 Velocity control 

Use the motor model developed in the previous section for designing discrete-time velocity control 
of the D.C. motor. The tachometer output is used as the feedback signal. In this section of the 
lab, first use a sampling time of T = 1 msec for the implementation on the real-time hardware 
and complete all indicated sections. This is fast enough that the effects of sampling are negligible, 
but it makes interesting interactions with a 700 Hz resonance in the motor. Also look at the effect 
of redesigning the loop for faster sample rates. Once you have seen the effect of a relatively low 
sample rate, decrease the sample time to T = 0.1 msec. What changes do you observe? Explain. 

6.1 Proportional Velocity Control 

a) Calculate the ZOH equivalent for the plant represented in Equation 3. 

b) Design a proportional velocity controller of the form G1(z) = Kp, which implements a crossover 
frequency of ωc = 50 rad and thus Ωc = 50T rad . Show your calculations. Implement this sec sample 
controller on the real-time hardware. What mechanical impedance (i.e., what equivalent 
spring/mass/dashpot) is created at the output shaft? How does this impedance vary with 
changing controller gain Kp? Why? (You can sense this impedance most easily at the 
potentiometer shaft, since the gearing makes this the higher stiffness point in the drivetrain.) 
The impedance is most easily felt with the velocity set to zero. 

c) What happens as you increase the gain Kp above its nominal design value? What limits the 
achievable bandwidth? 

d) Now please perform system identification via the swept-sine method. Download the dynamic 
signal analyzer files into your working directory. Create a file like dsa demo.mdl, as shown 
in Figure 4. This demo file is set up to test the frequency response of a lead compensator. 
Compile and download this file with Tools:RTW Build. Next, go to the MATLAB command 
window and type the line: mytf=dsa_tf(logspace(1,3,10),1). This starts the operation 
of the dynamic signal analyzer. You will be asked a set of questions at the command line, 
and should accept the default answers for all of them. This script file sweeps through a set of 
input sinusoids, and records the resulting output waveform. It then measures the magnitude 
and phase shift between them. 

5 



Figure 3: dSpace block diagram used for the implementation of proportional velocity control.


Figure 4: Simulink file dsa demo.mdl used to demonstrate the operation of a dynamic signal 
analyzer. 

The dynamic signal analyzer will create two windows, as shown in Figure 5. One allows you 
to inspect the input and output signals for saturation or poor signal-to-noise. The other 
builds an experimental bode plot. When complete, you can examine the data, and type help 
dsa tf to see the options available.1 Perform the system identification on the motor velocity 
plant from Equation 3 using first a sample rate of 1 kHz and then 10 kHz. Explain the results. 

e) Repeat your measurements in b) and c) with T = 0.1 msec. 

This dynamic signal analyzer was developed by Katie Lilienkamp as part of a Bachelor of Science thesis project 
in the Department of Mechanical Engineering at MIT. 

6 

1

Image removed due to copyright restrictions.

Image removed due to copyright restrictions.



� � 

Figure 5: Output windows of the dynamic signal analyzer demonstration program. 

6.2 PI velocity control 

Note: For this section and the remainder of the lab use T = 0.1 msec. 

Next, we implement PI control which removes the constant errors that were present with a propor
tional controller. Use a PI controller of the form 

G2 (z) = Kp 1 + 
KI z 
z − 1 

7


Image removed due to copyright restrictions.



7 

Use a discrete time integrator to implement the integral block. The presence of an integrator in 
your control law can lead to integrator windup. This can be noticed if you cause the error to 
accumulate in spite of saturation of the actuators. The integrating action of the controller keeps 
accumulating the error and leads to large overshoots. You can observe this by setting a constant 
velocity command, and by imposing a velocity error on the flywheel by clamping it with your hand. 
Be careful not to get yourself hurt while doing this (i.e., Keep your fingers out of the gear mesh). 

When you release the flywheel, you should be able to see a rather large overshoot. For the purpose 
of observing windup, use the DC offset of the signal generator to set the velocity to an essentially 
constant level. Note that the size of the overshoot is dependent on the time for which you hold the 
flywheel stationary. It is also interesting to conduct this experiment with the velocity command 
set to zero. 

a) Design a PI velocity controller which has a crossover frequency of ωc sec == 30 rad and thus Ωc 

30T rad , and with φm ≥ 45◦. Show your design. Explain how you calculated the necessary sample 
values of Kp and KI . Implement this controller on the real-time hardware. 

For a non-zero DC velocity reference, and with the integrator saturation limits set to infinity, 
clamp the flywheel with your hand for some period of time, and notice the large overshoots 
when you release it. Modify the integrator saturation limits to prevent windup and re-run 
the program. Again, impose velocity errors by holding the flywheel with your hand. Notice 
the greatly improved recovery performance when the integral term is bounded. Explain the 
difference in the response. You can also most conveniently use the Control Desk interface to 
set the integrator limits without recompiling. 

b) What mechanical impedance (i.e., equivalent spring/mass/dashpot) is created at the output 
shaft under PI velocity control? Why? Now use the Control Desk interface to set some 
explicit limits on the integrated output. Where should you set these limits and why? How 
does the mechanical output impedance change when anti-windup is implemented? Why? 
(This impedance is best sensed with the velocity command set to zero.) 

Position control 

Position control is in some sense more difficult than velocity control, due to the additional integrator 
in the transfer function. In position control, feedback is taken from the potentiometer. We use a 
one-turn 5 kΩ servo potentiometer in this setup. The term servo potentiometer means that it is 
specified for continuous rotation with a reasonable life time. Conventional pots will have a rotation 
stop at the extreme of rotation, and also will not endure continuous mechanical operation. Given 
the selected 1.5 k series resistors and for the ±15 V supplies the potentiometer voltage output varies 
from −9.4 to +9.4 volts. There is a discontinuity at the end of the range as the voltage transitions 
from the maximum negative to the maximum positive. 

We have used the above information when developing the relationship between potentiometer out
put voltage and motor shaft angle. This relationship also depends on the gear ratio of the drive 

8




Figure 6: Contents of the discrete-time integrator block allowing the user to limit the integrated 
value, and to apply anti-windup to the controller. 

train. Note that due to the way the potentiometer is connected, the motor angle is 6 times the 
potentiometer angle. The potentiometer angle is what you measure. However, in the model, we 
refer all variables to the motor shaft. 

We have added an anti-aliasing filter after the potentiometer, and before the A/D input. This 
anti-aliasing filter consists of a passive RC filter with a time constant of 10 ms. Its phase lag is 
significant at our target crossover frequencies, and so you should include it in your plant model. 
The specific values used for the components are R = 100 kΩ and C = 0.1 µf. 

a) Create a ZOH equivalent from the plant in Equation 4 and including the anti-aliasing filter. 

b) Design a lead-lag compensator using the servomotor plant model to implement a position 
controller which achieves a crossover frequency of ωc = 50 rad , Ωc = 50T rad , and a phase s sample 
margin of 45 degrees. Solve for the poles and zeros of the resulting discrete-time transfer 

9


Image removed due to copyright restrictions.



8 

function. Plot these poles and zeros on the z-plane. Sketch a discrete-time Bode plot of 
the plant transfer function. Implement your controller on the real-time hardware. Use a 
discrete-time transfer function block to enter the controller coefficients. Be sure to keep 
the lag portion of the controller separate so that you can implement integral anti-windup. 
Separating the lag portion of the controller is a practical detail that should be addressed in 
all controller designs. Design for a controller update rate of T = 0.0001 seconds. Record 
the system step response and compare with that predicted in your paper analysis. Note 
that the anti-aliasing filter creates significant phase-shift in the vicinity of crossover and so its 
dynamics must be accounted for in your design. Label the plot axes with frequency in rad/sec 
and also in radians/sample so that you can think easily between continuous and discrete-time 
frequencies. 

c) Use the dynamic analyzer to measure the response of the plant and the compensated system. 
Update your model in b) if necessary. 

d) With the controller running, notice the effect of increasing the gain Kp on the servo stiffness. 
Do you notice any deterioration of position stability with increasing loop bandwidth? What 
is this due to? What elements in the system limit the ultimate performance? 

e) With the controller running, and with a fixed reference, try manually rotating the potentiometer 
shaft away from a fixed reference point. Notice the restoring torque of the servo increases 
with time due to the integral control term. Record the transient response of recovery from 
this induced position error. Can you see the rather large overshoots caused by integral 
windup? Try this experiment both with and without integral anti-windup and comment on 
the difference. 

Quantization 

Quantization of the position sensor input often limits the performance of position control systems. 
In our system, we have quantization due to the analog-to-digital converter. In other systems, the 
postion sensor is often an encoder or other finite-resolution device. Quantization effects are difficult 
to see at the 16-bit level with our hardware, so in this section of the lab you will artificially limit the 
resolution of the A/D converter by adding a quantization block. Lower-resolution A/D converters 
(such as 8-bit models) are typically less expensive and faster than 12-bit and 16-bit versions. They 
are also often included with stand-alone microprocessors, and so may be the best converter for a 
particular application. However, one needs to understand the performance limitations they create. 

a) Modify your position control loop to include a quantization block limiting the resolution of the 
position sensor. Try running the controller at several different quantization levels, compiling 
and downloading after change. At what point do you notice the position response start to 
degrade? How would you alter your controller if you were forced to use a low-resolution sensor? 
Does having a limited sensor resolution affect your ability to take a swept-sine test with the 
dynamic signal analyzer? What does the position “noise” look like as the quantization is 
changed? What do the associated control outputs (DAC#1) look like? Why? 

10 


