MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 10.2

This problem is from"Advanced Fluid Mechanics Problems" by 2.25 Problem Set Solution - Problem

- (a) Show that if (1) and (2) are two arbitrary points in a steady, inviscid, incompressible flow in a uniform gravitational field,

$$
\begin{equation*}
\left(P_{2}+\frac{v_{2}^{2}}{2}+\rho g y_{2}\right)=\left(P_{1}+\frac{v_{1}^{2}}{2}+\rho g y_{1}\right)+\rho \int_{1}^{2}(\underline{v} \times \underline{\omega}) \cdot d \underline{l} \tag{10.2-1}
\end{equation*}
$$

Here, y is measured up against the gravitational field, $\omega=\nabla \times \underline{v}$ is the vorticity vector and the last term represents a line integral along any path between (1) and (2) through the flow.

- (b) Show that if the flow in (a) is a parallel, horizontal flow, that is,

$$
\begin{equation*}
\underline{v}=u(y) \underline{i}, \tag{10.2-2}
\end{equation*}
$$

as shown in the sketch, it follows from the equation in (a) that the pressure distribution is the hydrostatic one,

$$
\begin{equation*}
P_{2}+\rho g y_{2}=P_{1}+\rho g y_{1} \tag{10.2-3}
\end{equation*}
$$

- (c) Obtain the conclusion of (b) by using an argument based on Euler's equation in streamline form, rather than starting with the equation in part (a)

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

