MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 10.04

This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A steady, inviscid, incompressible flow experiences a change of cross sections between stations (1) and (2), as shown. At station (1), the velocity distribution is

$$
\begin{equation*}
v_{x}=U+k y, \quad-\frac{b_{1}}{2}<y<\frac{b_{1}}{2} \tag{10.04a}
\end{equation*}
$$

where U is the mean flow velocity. There are no body forces acting on the fluid. Considering U, k, and the system dimensions given, determine expressions for

- (a) the vorticity at station (1),
- (b) the vorticity at station (2),
- (c) the velocity distribution at station (2),
- (d) the ration $\frac{\Delta v_{x}}{v_{x}}$ average of the total velocity excursion to the average velocity at (2), divided by the same quantity at (1).

Answer

$$
\begin{equation*}
\frac{\Delta v / v_{a v}}{\Delta v / v_{a v}}=\left(\frac{A_{1}}{A_{1}}\right)^{2} \tag{10.04b}
\end{equation*}
$$

where A stands for $a \cdot b$.

Solution:

- (a) The vorticity vector at station (1) is

$$
\begin{equation*}
\underline{\omega}=-\frac{\partial v_{x}}{\partial y} \hat{e}_{z}=-k \hat{e}_{z} \tag{10.04c}
\end{equation*}
$$

- (b) The x and y components of $\underline{\omega}$ are zero initially. Let's first look at how these evolve,

$$
\begin{equation*}
\frac{D \underline{\omega}}{D t}=(\underline{\omega} \cdot \underline{\nabla}) \underline{V}, \tag{10.04d}
\end{equation*}
$$

in particular, in the x direction, (only direction not null due at the inlet and outlet)

$$
\begin{gather*}
\frac{D \omega_{x}}{D t}=\left(\omega_{x} \frac{\partial}{\partial x}+\omega_{y} \frac{\partial}{\partial y}+\omega_{z} \frac{\partial}{\partial z}\right) v_{x} \tag{10.04e}\\
\Rightarrow \frac{D \omega_{x}}{D t}=\omega_{z} \frac{\partial v_{x}}{\partial z} \Rightarrow D \omega_{x}=\int_{\text {station } 1}^{\text {station } 2} \omega_{z} \frac{\partial v_{x}}{\partial z} D t=0 . \tag{10.04f}
\end{gather*}
$$

Although $\frac{D v_{x}}{D t}$ is not zero always (it is not zero specifically in the region the wall bends), we can still argue that the above integral is zero. The streamlines bend across wall-bends causing pressure differential in cross-stream direction resulting in velocity differential $\frac{\partial v_{x}}{\partial z}$. However, the wall bends are once concave and then convex -hence, effectively cancel each other once we integrate over the entire particle motion across the flow regime. This is a loose physical argument but we have to live with this - to escape from otherwise complicated mathematics!
$\Rightarrow \omega_{x}=$ Const $=0$
Similarly, we have the y-component:
$\omega_{y}=$ Const $=0$
Now, let's look at the evolution of ω_{z},

$$
\begin{equation*}
\frac{D \omega_{z}}{D t}=\omega_{z} \frac{\partial v_{z}}{\partial z} \tag{10.04g}
\end{equation*}
$$

Replacing $\frac{D}{D t}$ by $\left.\frac{d}{d t}\right|_{m}$ for derivative along a material paticle,

$$
\begin{equation*}
\left.\frac{d \omega_{z}}{d t}\right|_{m}=\left.\omega_{z} \frac{\partial v_{z}}{\partial z} \Rightarrow \int \frac{d \omega_{z}}{\omega_{z}}\right|_{m}=\left.\int \frac{\partial v_{z}}{\partial z} d t\right|_{m} \tag{10.04h}
\end{equation*}
$$

From the figure, we can see that the variation of cross section in z-direction (i.e. variation of a) happens first (when the cross section in y direction remains the same). Similarly, the variation in y direction cross section is independent of z variation in this problem. Equation (h) only needs to be applied in the region where the variation of cross section in z-direction happens (since $\frac{\partial v_{z}}{\partial z}$ exists only in that region), i.e. from station 1 to say station 1^{\prime}.
From station 1 to station 1 ' continuity gives:

$$
\begin{equation*}
\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{z}}{\partial z}=0 \Rightarrow \frac{\partial v_{z}}{\partial z}=-\frac{\partial v_{x}}{\partial x} \tag{10.04i}
\end{equation*}
$$

We plug the above in (h) and do some rearrangement as below,

$$
\begin{gather*}
\left.\int_{1}^{2} \frac{d \omega_{z}}{\omega_{z}}\right|_{m}=\left.\int_{1}^{1^{\prime}} \frac{d \omega_{z}}{\omega_{z}}\right|_{m}=-\left.\int_{1}^{1^{\prime}} \frac{\partial v_{x}}{\partial x} d t\right|_{m}=-\left.\int_{1}^{1^{\prime}} \frac{d t}{d x} d v_{x}\right|_{m}=-\left.\int_{1}^{1^{\prime}} \frac{d v_{x}}{v_{x}}\right|_{m} \tag{10.04j}\\
\Rightarrow \frac{\omega_{z, 2}}{\omega_{z, 1}}=\frac{\omega_{z, 1^{\prime}}}{\omega_{z, 1}}=\frac{v_{x, 1}}{v_{x, 1^{\prime}}}=\frac{a_{2}}{a_{1}} \Rightarrow \omega_{z, 2}=-\frac{a_{2}}{a_{1}} k \tag{10.04k}
\end{gather*}
$$

Hence, the vorticity vector at station 2 is $\underline{\omega}_{2}=-\frac{a_{2}}{a_{1}} k \hat{e}_{z}$.

- (c) Now, at station 2,

$$
\begin{equation*}
\omega_{z}=-\frac{a_{2}}{a_{1}} k=-\frac{\partial v_{x}}{\partial y}, \Rightarrow v_{x}=\frac{a_{2}}{a_{1}} k y+C \tag{10.041}
\end{equation*}
$$

where C is a constant of integration. Mass conservation between station 1 and 2 gives

$$
\begin{align*}
& a_{2} \int_{\frac{b}{2}}^{\frac{b}{2}}\left(\frac{a_{2}}{a_{1}} k y+C\right)=a_{1} \int_{-\frac{b_{1}}{2}}^{\frac{b_{1}}{2}}(k y+U) d y \tag{10.04m}\\
& \Rightarrow a_{2} b_{2} C=a_{1} b_{1} U, \Rightarrow C=\frac{a_{1} b_{1}}{a_{2} b_{2}} U=\frac{A_{1}}{A_{2}} U . \tag{10.04n}
\end{align*}
$$

Hence, velocity distribution at station 2 is $v_{x}=\frac{a_{2}}{a_{1}} k y+\frac{A_{1}}{A_{2}} U$.

- (d)First, let's calculate the requested values at 1 and 2 in order to get the ratio. First at 2 , then

$$
\begin{equation*}
\left.\frac{\Delta v}{v_{a v}}\right|_{2}=\frac{\left(\frac{a_{2}}{a_{1}} k \frac{b_{2}}{2}+\frac{A_{1}}{A_{2}} U\right)-\left(\frac{a_{2}}{a_{1}} k\left(-\frac{b_{2}}{2}\right)+\frac{A_{1}}{A_{2}} U\right)}{\frac{A_{1}}{A_{2}} U}=\frac{a_{2} b_{2} k A_{2}}{a_{1} A_{1} U}=\frac{k A_{2}^{2}}{a_{1} A_{1} U} . \tag{10.04o}
\end{equation*}
$$

And for station 1,

$$
\begin{equation*}
\left.\frac{\Delta v}{v_{a v}}\right|_{1}=\frac{\left(k \frac{b_{1}}{2}+U\right)-\left(-k \frac{b_{1}}{2}+U\right)}{U}=\frac{k b_{1}}{U} \tag{10.04p}
\end{equation*}
$$

then we can finally calculate the ratio,

$$
\begin{equation*}
\frac{\Delta v /\left.v_{a v}\right|_{2}}{\Delta v /\left.v_{a v}\right|_{1}}=\left(\frac{A_{2}}{A_{1}}\right)^{2} . \tag{10.04q}
\end{equation*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics

Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

