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2.25 Advanced Fluid Mechanics 

Problem 10.04 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

A steady, inviscid, incompressible flow experiences a change of cross sections between stations (1) and (2), 
as shown. At station (1), the velocity distribution is 

b1 b1 
vx = U + ky, − < y <  , (10.04a)

2 2 

where U is the mean flow velocity. There are no body forces acting on the fluid. Considering U , k, and the 
system dimensions given, determine expressions for 

• (a) the vorticity at station (1), 

• (b) the vorticity at station (2), 

• (c) the velocity distribution at station (2), 

• (d) the ration Δvx average of the total velocity excursion to the average velocity at (2), divided by the vx 

same quantity at (1). 

Answer 

Δv/vav 

Δv/vav 
= 

� 
A1 

A1 

�2 

, (10.04b) 

where A stands for a · b. 
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Solution: 

• (a) The vorticity vector at station (1) is 

∂vx
ω = − êz = −kêz .	 (10.04c)

∂y 

• (b) The x and y components of ω are zero initially. Let’s first look at how these evolve, 

Dω 
= (ω · ∇)V ,	 (10.04d)

Dt
 

in particular, in the x direction, (only direction not null due at the inlet and outlet)
 

Dωx ∂ ∂ ∂ 
= ωx + ωy + ωz vx,	 (10.04e)

Dt ∂x ∂y ∂z  station2Dωx ∂vx	 ∂vx⇒ = ωz ⇒ Dωx = ωz Dt = 0.	 (10.04f) 
Dt ∂z	 ∂zstation1 

Although Dvx is not zero always (it is not zero specifically in the region the wall bends), we can Dt 
still argue that the above integral is zero. The streamlines bend across wall-bends causing pressure 
differential in cross-stream direction resulting in velocity differential ∂vx . However, the wall bends are ∂z 
once concave and then convex -hence, effectively cancel each other once we integrate over the entire 
particle motion across the flow regime. This is a loose physical argument but we have to live with this 
- to escape from otherwise complicated mathematics! 
⇒ ωx = Const = 0  

Similarly, we have the y-component: 
ωy = Const = 0  

Now, let’s look at the evolution of ωz, 

Dωz ∂vz = ωz ,	 (10.04g) 
Dt ∂z 

D dReplacing by |m for derivative along a material paticle, Dt dt 

  
dωz ∂vz dωz ∂vz|m = ωz ⇒ |m = dt|m.	 (10.04h)
dt ∂z ωz ∂z 

From the figure, we can see that the variation of cross section in z-direction (i.e. variation of a) happens 
first (when the cross section in y direction remains the same). Similarly, the variation in y direction 
cross section is independent of z variation in this problem. Equation (h) only needs to be applied in 
the region where the variation of cross section in z-direction happens (since ∂vz exists only in that ∂z 
region), i.e. from station 1 to say station 1’. 
From station 1 to station 1’ continuity gives: 

∂vx ∂vz ∂vz ∂vx+ = 0  ⇒ = − ,	 (10.04i)
∂x ∂z ∂z ∂x 

We plug the above in (h) and do some rearrangement as below,

  1'  1'  1'  1'2 dωz dωz ∂vx dt dvx|m = |m = − dt|m = − dvx|m = − |m, (10.04j)
ωz ωz ∂x dx vx1 1 1 1 1 

ωz,2 ωz,1' vx,1 a2 a2⇒	 = = = ⇒ ωz,2 = − k. (10.04k)
ωz,1 ωz,1 vx,1' a1 a1 

Hence, the vorticity vector at station 2 is ω2 = −a2 kêz . a1 
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•	 (c) Now, at station 2, 
a2 ∂vx a2

ωz = − k = − , ⇒ vx = ky + C,	 (10.04l) 
a1 ∂y a1 

where C is a constant of integration. Mass conservation between station 1 and 2 gives 

b	 b1 

a2 

2 a2 
ky + C = a1 

2 

(ky + U)dy, (10.04m) 
b a1 b1−2	 2 

a1b1 A1⇒ a2b2C = a1b1U, ⇒ C = U = U. (10.04n) 
a2b2 A2 

a2Hence, velocity distribution at station 2 is vx = ky + A1 U . a1 A2 

• (d)First, let’s calculate the requested values at 1 and 2 in order to get the ratio. First at 2, then 

Δv 
vav 

|2 = 

a2 
a1 

k b2 
2 + A1 

A2 
U − a2 

a1 
k 

A1 
A2 

U 

− b2 
2 + A1 

A2 
U 

= 
a2b2kA2 

a1A1U 
= 

kA2 
2 

a1A1U 
. (10.04o) 

And for station 1, 

Δv 
vav 

|1 = 
k b1 

2 + U − − k b1 
2 

U 

+ U 
= 

kb1 

U 
, (10.04p) 

then we can finally calculate the ratio, 

Δv/vav|2 

Δv/vav|1 
= 

A2 

A1 

2 

. (10.04q) 

D 

Problem Solution by MK, Fall 2008 
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