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ABSTRACT 

The system of equations in a steady, compressible, 
laminar boundary layer is composed of four fundamental 
equations. Those are: the continuity equation, the 
momentum equation, the energy equation, and the 
equation of state. The solutions of these equations, 
when solved simultaneously for a 2-dimensional 
boundary layer, are: the velocity in the x and y direction 
( u and v ), the pressure (p) and the density (ρ ). The 
system of equations is a system of partial differential 
equations (PDE) and is usually difficult to solve. 
Therefore, sophisticated transformation methods, called 
similarity transformations are introduced to convert the 
original partial differential equation set to a simplified 
ordinary differential equation (ODE) set. The solutions of 
this ordinary differential equation set are usually 
nondimensionalized velocities and temperature. By 
principle, these ordinary equations are coupled 
mathematically and usually can be solved by numerical 
methods. However, with further appropriate assumptions 
related to the transport properties (e.g. Prandtl number), 
and flow conditions (e.g. Mach number, geometry 
around flow), these ODEs can be uncoupled 
mathematically or can have simpler forms, almost similar 
to the forms obtained from the incompressible boundary 
layer analysis. (e.g. Blasius solution, Falkner-Skan 
equation). Hence, the simplified ODE set makes it 
possible to get the solution from the already existing 
solutions of the incompressible analysis and also 
reduces the computing time in the numerical analysis.  

In this paper, three different transformation methods will 
be described. A detailed derivation of the generalized 
(Levy-Ilingworth) transformation method and the 
appropriate assumptions made during the derivation will 
be explained. The Howarth transformation and the 
Illingworth-Stewartson transformation will be described 
briefly. 

INTRODUCTION 

The system of equations in the incompressible boundary 
layer with forced convection, is a PDE system composed 
of the continuity, the momentum, and the energy 
equations. These simultaneous equations can be 
reduced to two ODEs using similarity transformation. In 
this case, continuity equation and momentum equation 
are reduced to a single ODE and energy equation is 
reduced to another ODE. 
 
Compared with the incompressible boundary layer 
analysis, the effect of compressibility on the entire 
velocity and temperature field should be considered. As 
a result, the system of equations in compressible 
boundary layer is a more complicated PDE system, 
composed of the continuity equation, the momentum 
equation, the energy equation and an equation of state. 
  
SYSTEM OF EQUATIONS OF COMRESSIBLE 
BOUNDARYLAYER 

The system of governing equations to be solved for a 
two-dimensional, steady, compressible, laminar 
boundary layer without body forces and bulk heat 
transfer is as follows:  

GOVERNING EQUATIONS 

Continuity equation 
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Momentum equation 
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Energy equation 
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An equation of state 

ρRTp =              (4) 

where,  
x : Direction along the surface creating the boundary 
layer 
y : Direction normal to the surface 
u : Velocity in the x  direction 
v : Velocity in the y  direction 
ρ : Density 
p : Pressure 
µ : Viscosity 
ν : Kinematic viscosity 
p : Pressure 
h : Enthalpy 
R : Gas constant 
 
Comparing the energy equation (3) to the energy 
equation (A.47) used in incompressible boundary layer 
with forced convection shown in Appendix.4, the first 
term in the energy equation in (3) is retained, which is 

the compressive work term 
x
Pu
∂
∂

ρ
. The second term on 

the right hand side of the energy equation represents the 
diffusion of heat transferred to the fluid or generated 
within the fluid. The third term represents the heat 
generated due to viscous stresses within the fluid, i.e., 
viscous dissipation. 
 

BOUNDARY CONDITIONS 

These boundary conditions at the surface, i.e., 0=y  
are given by the no-slip velocity condition with or without 
mass transfer or heat transfer. 
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At the edge of the boundary layer, the viscous flow 
inside the boundary layer is required to smoothly 
transition into the inviscid flow outside the boundary 
layer. 
 

( ) ( ), ( ) ( )e eu y U x h y h x→∞ → →∞ →          (6) 
 
where, the subscript e represents condition at the edge 
of the boundary layer. 

NONDIMENSIONAL FORM OF THE EQUATIONS 

Introducing the non-dimensional variables: 
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then, the original equations (1)~(4) become: 
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where,  
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pC : Specific heat at constant pressure 

vC : Specific heat at constant volume 

In the non-dimensional energy equation (11), the first 
term, i.e., the work due to compression and the third 
term, i.e., the heat generated by viscous dissipation 
become increasingly important as the Mach number of 
the external flow increases.  

BASIC ASSUMPTONS IN THE COMPRESSIBLE 
BOUNDAY LAYER 

In the PDE system composed of equations (1)~(4), the 
influence of compressibility is first contained directly in 
the density terms ρ  in the continuity equation (1), and 
more indirectly as a variable coefficient in the 
momentum equation (2) and energy equation (3). The 
second influence of compressibility is to produce 
temperature variations that are too large to permit the 
assumption of constant properties µ  and k .   
 
It is common to use the energy equation written in terms 
of enthalpyh  in compressible problems instead of k  as 
shown in the energy equation (3), in which the Prandtl 

number (Pr) is shown instead of 
Pr
pck

µ
= . Therefore, 

the added complexity with compressible, laminar 
boundary layer problems is centered on variable ρ , µ , 
and Pr. 
 
From an equation of state, the density is a function of 
temperature and pressure, i.e., ),( PTρρ = . However, 
the pressure is assumed constant across the boundary 
layer. Therefore, the density can be assumed to be a 
function of temperature only, i.e., )(Tρρ = . The 
viscosity µ  also can be assumed to a function of 
temperature only, i.e., )(Tµµ = . Finally, the Prandtl 
number (Pr) is assumed nearly constant for most gases 
over a wide range of temperature. 
 
DERIVATION OF GENERALIZED SIMILARITY 
TRANSFORMATION (ILLINGWORTH-LEVY OR 
LEVY-LEE TRANSFORMATION) 

The derivation of a generalized similarity transformation 
is from the procedure adopted by Li and Nagamatsu [1] 
and is well summarized in [2]. 

ENERGY EQUATION IN TERMS OF ENTHALPY 

The energy equation can be rewritten in terms of the 
total enthalpy. 
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where,  
u : the velocity along the streamline 
 
Using equation (13), the energy equation (3) becomes: 
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The pressure gradient term in the energy equation (14) 
can be eliminated by multiplying the momentum 
equation (2) by u and adding the result to the energy 
equation (14). This results in: 
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(15) 
 
EQUATIONS IN TERMS OF STREAM FUNCTION 
 
For the similarity transformations and the corresponding 
similar solutions, the compressible stream function can 
be defined by: 
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Equation (16) and (17) automatically satisfy the 
continuity equation (1). Then, the momentum equation 
(2) and energy equation (15) become: 
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VARIABLE TRANSFORMATION 
 
Dependent variable transformation 

From the experience with the incompressible boundary 
layer equations, the dependent variable transformations 
are introduced as follows: 
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where, the subscript η  indicates partial differentiation.  
 
The form of the enthalpy transformation (22) states that 
the compressible boundary layer is expected to be 
similar with respect to a non-dimensional total enthalpy 
profile rather than the static enthalpy or temperature 
profile, as in the case for the incompressible constant-
property boundary layer.  
 
Independent variable transformation 

Independent variable transformations are introduced as 
follows: 
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),( yxηη =            (24)

  
Relation between independent and dependent 
variable through trnasformation 

From the definitions of the stream functions in (16) and 
(17): 
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or integrating: 
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)(xN will be determined from the transformed 

momentum and energy equations.  
 
FIRST FORM OF TRANSFORMED EQUATIONS 
 
Introducing equations (23), (24), and (27) into the 
momentum equation (18) and energy equation (19) 
results in: 
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where, the subscripts η , ξ , and x  indicate partial 
differentiations.  
 
SIMPLIFIED FORM OF TRANSFORMED EQUATIONS  
 
Chapman - Rubesin viscosity assumption 

In the equations (28) and (29), the density and the 
viscosity, always appear in the form ρµ  except in the 
pressure gradient term. This leads to the assumption of 
a Chapman-Rubesin viscosity law, with 1=w  in 
equation (A.3) as shown in Appendix 1. Using the 
conditions at the edge of the boundary layer as 
reference condition results in: 
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and the equation of state: 
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Substituting this result (31) into equations (28) and (29) 
results in: 
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(33) 
 
Linear viscosity law assumption, similar assumption, 
and iso-energetic assumption 

The coefficient )(ηC in equation (31) can vary through 
the boundary layer. However, the constant C  
assumption is made, and is evaluated at the surface 
conditions, e.g., using the Sutherland viscosity law in 
Appendix 1. 
  
The flow is assumed to be similar, in other words, 

)(ηff =  and )(ηgg = such that the right hand side 
of the momentum equation (32) and energy equation 
(33) become zero.  
 
Finally, it is assumed that the total enthalpy at the 
boundary layer edge is constant, i.e., 0, =xeH . This 
iso-energetic assumption of the inviscid flow at the edge 
of the boundary layer, i.e., )(xHe =constant, is not 

restrictive. Since
2

2
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both the static enthalpy 

and the velocity can vary along the edge of the boundary 
layer. From the fact that the stagnation enthalpy is 
constant across a shock wave, the iso-energetic flow 
assumption is reasonable when the shock wave is not 
significantly curved 
 
From these assumptions, equation (32) becomes 
following (34) by replacing pressure gradient term using 
Euler’s equation at the edge of the boundary layer, i.e., 
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and, the equation (33) becomes: 
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where, the prime denotes ordinary differentiation with 
respect toη . 
 
SIMILARITY CONDITIONS 
 
From equations (34) and (35), the similarity conditions 
are: 
 
Condition (1)  
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Condition (2) 
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Condition (3)  
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Simplification from Condition (1) 

If the constant in condition (1) is the unity, then, in the 
absence of a pressure gradient, the momentum equation 
(34) reduces to the Blasius equation in Appendix.2. In 
addition, comparing equation (35) with the energy 
equation (A.91) for forced convection in Appendix.5, by 
choosing the constant in condition (1) as unity, the 
differential equation (35) for the compressible boundary 
layer with unit Prandtl number has the same form as that 
for the incompressible boundary layer with an isothermal 
wall. Therefore, the constant in condition (1) is chosen 
as unity as follows:  
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Rearranging and integrating of equation (39) results in: 
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Using equation (40), equation (27) becomes: 
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Since, )(xξξ = and:  
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The transformations given in (42) and (43) are called the 
Illingworth-Levy transformation. 
 
Simplification from condition (2) 

For the case of
 

.eH const= , using the definition of 

)(ηg in equation (22) and the definition of the stagnation 
enthalpy: 
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Since, fUu e ′=/ , equation (44) can be written as 
follows: 
 

2
22

22
1 f

h
U

g
h
U

h
h

e

e

e

e

e

′−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=          (45) 

 
Finally, from the constant pressure assumption across 
the boundary layer, 
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then, the term in condition (2) becomes:  
 

)(ˆ)( 22
2

2

fgfg
h
H

UC
UN

e

e

eee

x ′−=′− β
µρ

       (47)  

Simplification from condition (3)
 

Condition (3) can be written as follows: 
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FINAL FORM OF TRANSFORMED EQUATIONS 

 
From the above simplifications, the final governing 
equations are: 
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ASSUMPTION FOR THE EXISTENCE OF SIMILAR 
SOLUTION  

Power law variation in the Mach number 

Similar solutions of the equations (48) and (49) exist if  
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is constant. 
 
β̂  can be written in terms of the external Mach number 

by differentiating [ ] eee hUM 2/2/)1( 22 =−γ  and 

evaluating ξddhe /  using the fact that the stagnation 
enthalpy is constant at the edge of the boundary layer. 
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From equations (51) and (52), equation (50) becomes: 
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Integrating the equation (53) results in 
 

2

ˆ

)(
β

ξconstM e =          (54) 
 
Therefore, the similarity requirement for the momentum 
equation (48) is satisfied by a power law variation of the 



Mach number in the transformed plane. In addition, the 
similarity requirement is satisfied by an exponential 
Mach number variation, which is shown by Li and 
Nagamatsu [1] and Cohen [2]. 
 
Other assumptions 

Furthermore, in order for similarity conditions in 
equations (48) and (49) to exist, one of the following 
assumptions must also be satisfied: 
 
(1) 1=γ  

(2) 0=eM  

(3) 1Pr =  
(4) constM e =  

(5) 2=σ , i.e., ∞→eM  
 
The assumption (1), i.e., 1=γ  is unrealistic for most 
gases.  
 
The assumption (2), i.e., 0=eM  neglects both the 
viscous dissipation and the compressive work terms in 
the energy equation. If it is further assumed that there is 
no heat transfer at the surface, the 0=eM  assumption 
states that the static temperature through the boundary 
layer is constant. However, since the static temperature 
in the boundary layer should vary from the surface 
temperature to the static temperature at the boundary 
layer edge, the 0=eM  assumption is less realistic than 
the unit Prandtl number assumption.  
 
The assumption (3), i.e., 1Pr =  states that the 
stagnation enthalpy or temperature for zero heat transfer 
at the surface is constant through the boundary layer. 
This result is close to the true adiabatic wall stagnation 
enthalpy variation, which is slight. 
 
The assumption (4), i.e., constM e =  corresponds only 

to the flat plate ( 0ˆ =β ) in equation (54). However, for 

small values of the pressure gradient parameter, β̂ , the 
constant external Mach number assumption is sufficient. 
 
The assumption (5), i.e., ∞→eM  leads to the 

hypersonic flow assumption, i.e., 2=σ . This 
approximation is less than five percent in error at the 
external Mach number of ten. In addition, it allows the 
investigation of the effects of constant but non-unit 
Prandtl number on the heat transfer at the surface. 
 
BOUNDARY CONDITIONS 

Boundary conditions at the surface 

The boundary conditions required at the surface for 
similar solutions to exist are: 
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    0)0( =′f          (55a, b) 

 
The equation (55a) represents the mass transfer normal 
to the surface. This equation is obtained by 
differentiating the stream function, equation (20), with 
respect to x , using the definition of )(xN  given by the 

equation (40) to evaluate xN  and the Chapman-
Rubesin viscosity law to rearrange the result. In addition, 
for similar solutions to exist, )0(f  must be constant. 
This implies that: 
 

0)( =xv     or     
ξ

µ
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xU
xv ew=   (56a, b) 

 
Here, as for the Falkner-Skan equation in Appendix 3, 
negative values of )0(f correspond to mass transfer 
from the surface to the fluid, i.e., injection or blowing, 
and positive values of )0(f  correspond to mass 
transfer from the fluid into the surface, i.e., suction.  
 
The boundary condition related to the energy equation 
is: 
 

constgg w ==)0(  or  0)0( =′g   (57a, b) 
 
Outer boundary conditions 

The outer boundary conditions are 
 

1)( →∞→′ ηf    1)( →∞→ηg   (58a, b) 
 
SOLVING EQUATIONS 

Similar solutions for equations (48) and (49) subject 
these boundary conditions (55)~(58) can be obtained 
according to the following cases. The results are 
summarized in Appendix 6. In all the bellow cases, the 
fundamental equations are transformed to equations 
similar to the fundamental equations governing the 
incompressible boundary layer.  
 
Case 1: Low Speed Compressible Boundary Layer 
with Variable Properties 

constPr ,0M ,ˆ
e === constβ  

0=eM  means neglecting the viscous dissipation and 
compressive work in the energy equation and is 
acceptable when the right hand side of equation (49) is 
small compared to the left hand side of equation (49). 
 
The boundary value problem for this case can be written 
as follows: 



 
0)(ˆ 2 =′−+′′+′′′ fgfff β          (59) 

 
0Pr =′+′′ gfg           (60) 

 
with boundary conditions 
 

constff w ==)0(     0)0( =′f         (61) 
 

constgg w ==)0(  or  0)0( =′g         (62) 
 

1)( →∞→′ ηf    1)( →∞→ηg         (63) 
 
Since, 
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From equation (64), 0=eM  case results in  
 

)()( ηη g
h
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Solution )(ηg of equation (60) represents non-
dimensional static enthalpy profiles through the 
boundary layer or non-dimensional temperature profile 
for a constant specific heat at constant pressure ( pc ). 
 
Further, from equation (50)  
 

)/)(/2(ˆ ξξβ ddUU ee=  
 
and, from equation (42)  
 

dxUCd eeeµρξ =  
 
Therefore, integration yields 
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where,  

)ˆ2/(ˆ ββ −≡m  

β̂  : same as β , i.e., Falkner-Skan pressure gradient 
parameter in Appendix 3. 
 
Case1.1 Coupled-equations case (Nonzero heat 
transfer and 0ˆ ≠β ) 
 
Due to the variable properties included in the solution, 
the momentum and energy equations are coupled. 
When there is heat transfer at the surface, the given 

equations in this case has no known analytical solution. 
This boundary value problem needs numerical methods. 
 
Case 1.2 Uncoupled-equations ( 0)0(,0ˆ == fβ : Flat 
plate without mass transfer at the surface) 
 
For this case, momentum equation (59) reduces to 
Blasius equation in Appendix 2. Further, energy 
equation (60) has the same functional form as the 
energy equation governing the incompressible constant 
property forced convection thermal boundary layer 
without viscous dissipation, i.e., equation (A.62) in 
Appendix 4. In particular, the solution of equation (A.62) 
for arbitrary but constant Prandtl number is 
 

)()1(1)( 1 ηθη wgg −−=          (66) 
 
where, 

)(1 ηθ : non-dimensional solution given by equation 
(A.66) in Appendix 4 
 
Case 1.3 Another uncoupled-equations - Adiabatic 
wall 
 
For an adiabatic wall, i.e., 0)0( =′g  integrating 
equation (60) twice and using the boundary condition 

1)(,0)0( →∞→=′ ηgg  results in 1)( =ηg . 
 
For zero Mach number, the static enthalpy is constant 
through the boundary layer. Equation (62) is analogous 
to the Busemann and Crocco integrals, which are, 
however, restricted to Pr=1. Using Equation (62), the 
momentum equation becomes 
 

0)1(ˆ 2 =′−+′′+′′′ ffff β          (67) 
 
This equation (67) is the Falkner-Skan equation in 
Appendix 2. 
 
Although the non-dimensional momentum and energy 
equations are mathematically uncoupled, physically they 
are still coupled through the transport properties. 
Considering the independent variable transformation for 
η , from equations (43) and (46), the physical dimension 
y  becomes: 
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Where, 
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Case 2: Compressible Boundary Layer on a Flat 
Plate 
 

constPr ,M ,0ˆ
e === constβ  

 
In the external inviscid flow, eeU ρ,  and eT  are constant, 
equation (59) reduces to the Blasius equation in 
Appendix 2. 
 

0=′′+′′′ fff            (69) 
 
The governing differential equations (69) and (49) are 
uncoupled. Since, the governing equations are 
uncoupled, they are integrated sequentially in a manner 
similar to that used for the incompressible constant 
property forced convection boundary layer in Appendix 4. 
And, the boundary conditions are again given by 
equations (61), (62), and (63).  
 
Case 2.1 Pr=1 and Adiabatic wall 
 
Equation (49) reduces to  
 

0=′+′′ gfg            (70) 
 
A specific integral of this form of the energy equation 
(62) for zero heat transfer at the surface, i.e., adiabatic 
wall is 1)( =ηg . However, since here 0≠eM , )(ηg is 
the ratio of stagnation enthalpies instead of the ratio of 
static enthalpies. Therefore, in this case, the stagnation 
enthalpy is constant through the boundary layer. Further, 
the adiabatic wall condition is 1)0( == ggaw . This 
means that for the unit Prandtl number, the stagnation 
enthalpy at the surface is equal to the stagnation 
enthalpy at the edge of the boundary layer. Since, the 
velocity is zero at the surface, for constant specific heat, 
the adiabatic wall temperature is equal to the stagnation 
temperature of the fluid at the boundary layer edge, 
which means, consequently, the unity recovery factor. 
This physical meaning is that the conversion of kinetic 
energy into thermal energy at the surface through the 
viscous dissipation is as efficient as the conversion of 
kinetic energy into thermal energy through the action of 
pressure forces in the inviscid flow at the boundary layer 
edge. This particular integral of the energy equation is 
called the Busemann energy integral. 
 
Case 2.2 Pr=1 and Isothermal wall 

constgw =  
 

From the Blasius equation 0=′′+′′′ fff , if )( Af +′  is 
multiplied to the Blasius equation, where A is some 
constant, and add that result to the energy equation 

0=′+′′ gfg  in equation (67), the result becomes: 
 

0)()()( =′′+′′′′+′′+′+′′′+′′ fffffAgffAg       (71) 
 

0)()( =′′++′′′+′ fAgffAg         (72) 
 
Integrating once:  
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η

0)()(
fd

econstfAg          (73) 
 
Using the boundary condition in equations (61), (62), 
and (63) at the surface ( 0=η ) yields )(constgw =′  =0 
for the isothermal surface. 
 
After integrating equation (73) again and using 
equations (61), (62), and (63): 
 

wgconstfAg ==′+ )(          (74) 
 
The constant A is evaluated from the boundary condition 
at infinity, equation (63).  
Finally, 
 

ww gfgg =′−+ )1(            (75) 
 
Equation (75) is called the Crocco integral. 1=awg  and  

1)( =ηg  is a solution of the energy equation (75) for 
unit Prandtl number. 
 
Case 2.3( 1Pr ≠ )  
 
The energy equation )Pr)(1(Pr ′′′′−=′+′′ ffgfg σ  is 
a linear non-homogeneous second order ordinary 
differential equation with variable coefficients. The non-
homogeneous term is a known forcing-function that is 
physically attributed to heat addition due to viscous 
dissipation. Since, the governing equation is linear, a 
solution is obtained as the sum of a complementary 
solution of the homogeneous equation and a particular 
solution of the non-homogeneous equation. 
 

21 GKGKg σ++=           (76) 
 
where, )(1 ηG  is the solution of the homogeneous 
boundary value problem, i.e. with original boundary 
conditions: 
 

0Pr 11 =′+″ fGG           (77) 

1)0(1 =G    0)(1 →∞→ηG          (78) 
 



where, )(2 ηG  is the solution of the non-homogeneous 
boundary value problem with homogeneous boundary 
conditions: 
 

)Pr)(1(Pr 22 ′′′′−=′+″ fffGG         (79) 

0)0(2 =′G    0)(2 →∞→ηG         (80) 
 
From the comparison of equations (A.62) & (A.63) in 
Appendix 4 with equations (77) & (78), )()( 11 ηθη =G . 

Therefore, )(1 ηG  is given by equation (A.66) in 
Appendix 4. 
 
Comparing equations (A.64)&(A.65) in Appendix 4 with 
equations (79)&(80) reveals that the non-homogeneous 
terms are different. By using the method of variation of a 
parameter or an integrating factor, 
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where, 

)(2 ηθ : non-dimensional solution given by equation 
(A.71).  
The constants K  and K in equation (76) are evaluated 
using the boundary conditions equations (61), (62), and 
(63). 
 
The complete solution is therefore  
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(82) 
 
When 0=σ , equation (82) reduces to equation (66) 
obtained for 0=eM .  
 
From [ ]22 )2/)1((1/)1( ee MM −+−= γγσ , the effects 
of viscous dissipation on the enthalpy profile are 
significant when the external Mach number is significant 
as shown in Figure A.4 in Appendix 6. As σ increases 
the maximum enthalpy ratio in the boundary layer 
increases. This is a result of the conversion of kinetic 
energy within the boundary layer into thermal energy 
through viscous dissipation. 
 
By differentiating the equation (82) and setting the result 
to be zero, adiabatic wall temperature can be obtained 
as follows. 

 

[ ])2/1)0(()1()0(0)0( 21 −+−′−==′ θσθ awgg    (83) 
 
or 
 

)2/1)0((1 2 −+= θσawg          (84) 
 
Case 3: General Similar Compressible Boundary 
Layer with Unit Prandtl Number  

1Pr ,)(M ,ˆ 2
ˆ

e ===
β

ξβ constconst  
 

0)(ˆ 2 =′−+′′+′′′ fgfff β          (85) 
 

0=′+′′ gfg            (86) 
 
with boundary conditions 
 

constff w ==)0(     0)0( =′f         (87) 
 

constgg w ==)0(  or  0)0( =′g         (88) 
 

1)( →∞→′ ηf    1)( →∞→ηg         (89) 
 
This is the same non-dimensional boundary value 
problem governing the low speed  ( 0=eM ) 
compressible boundary layer, i.e., case 1. However, 
here the non-dimensional dependent variable g  is the 

ratio of stagnation enthalpies eHH /  rather than ehh / . 
This means that in this case 3, the effects of viscous 
dissipation are included. 
 
Case 3.1 Adiabatic wall 
 
For zero heat transfer at the surface, an explicit integral 
of equation (60) subject to equations (61), (62), and (63) 
is 1)( =ηg . This shows that, for an adiabatic wall, the 
stagnation enthalpy is constant through the boundary 
layer. Therefore, for zero heat transfer at the surface, 
the internal heat generated due to viscous dissipation in 
the velocity field and the heat transferred by diffusion 
and conduction in the temperature field interact in a 
precise manner to maintain the stagnation enthalpy 
constant throughout the boundary layer. This result is a 
consequence of the unit Prandtl number assumption. As 

1)( =ηg , the non-dimensional momentum equation 
reduces to the Falkner-Skan equation in Appendix 3. 
Therefore, the nondimensional momentum and energy 
equations are uncoupled. 
 
Case 3.2 Non-zero heat transfer at the surface case 
 
When there is heat transfer at the surface, the given 
equations in this case has no known analytical solution. 
This boundary value problem was studied numerically by 



Cohen [2], Levy [3], Li & Nagamatsu [1], Cohen & 
Reshotko [4], and Rogers [5]. 
 
Case 4: Similar Hypersonic Compressible Boundary 
Layer 
 

1Pr ,M ,ˆ
e ≠∞→= constβ  

 
0)(ˆ 2 =′−+′′+′′′ fgfff β          (90) 

 
)Pr)(1(2Pr ′′′′−=′+′′ ffgfg          (91) 

 
with boundary conditions 
 

constff w ==)0(     0)0( =′f         (92) 
 

constgg w ==)0(  or  0)0( =′g          (93) 
 

1)( →∞→′ ηf    1)( →∞→ηg         (94) 
 
For the cases 1 to 3, under certain conditions, the 
boundary value problem for the compressible boundary 
layer could be reduced to an equivalent incompressible 
boundary layer problem. However, this is not possible 
for the present case 4. This is because the stagnation 
enthalpy is not constant through the boundary layer 
even for an adiabatic wall ( 1)( =ηg  is not an integral of 

the energy equation). Thus, since, 0ˆ ≠β , the 
momentum equation (90) cannot be reduced to the 
Falkner-Skan equation in Appendix 3. Therefore, the 
functions )(),( ηη ff ′  and )(ηf ′′  required in the 
energy integrals, equations (A.66) and (81), depend on 

)(),( ηη gg ′  and )(ηg ′′  because of the coupling 
between the momentum and energy equations, (59) and 
(91). Because of this coupling, the energy integrals 
cannot be evaluated except by successive 
approximations using the incompressible Falkner-Skan 
solutions to begin the approximation. Therefore, 
numerical method should be used to get the exact 
solution. 
 
RELIABILITY OF THE SIMILARITY 
TRANSFORMATION METHODS 
 
Experimental data presented in Figure A.6 in Appendix 6 
suggest that the proposed transformations predict the 
velocity and enthalpy of the system with high accuracy 
(e.g. velocity profile for the compressible boundary layer 
on an adiabatic flat plate)  
 
It should be noted, however, that real life applications 
are most likely to deviate from one of these four 
categories presented above. The need for numerical 
simulation is then becoming essential for more accuracy. 
However, the analytical approach is critical as it provides 
the essential framework on which the numerical 
approximations are built.   

 
OTHER SIMILARITY TRANSFORMATIONS 

HOWARTH TRANSFORMATION 

Howarth transformation here is a restricted form of the 
transformation similar to the one due to Howarth [7] and 
the following derivation is adopted from ([2][8]). 
 
Introducing the compressible stream function defined by 
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where, the subscript r indicates some reference 
condition.  
 
Independent variable transformations are: 
 

)(xξξ =       ),( yxηη =         (96) 
 
, which are subject to the condition  ηψ=u .  
 
The particular functional forms chosen for the 
independent variable transformations are based on the 
equivalent forms for incompressible flow with restriction 

ηψ=u  which is also based on the incompressible 
results.  
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which, yields the required independent variable 
transformation for η , i.e. 
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The formal transformation equations are  
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Transform of the momentum equation 
 
Using equations (99) and (100), the transformed 
momentum equation becomes: 
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Using the Chapman-Rubesin viscosity law with w=1 in 
Appendix 1, i.e. 
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and from 0/ =∂∂ yP , and using the equation of state,  
 

rrC µρρµ =           (103) 
 
then, equation (101) becomes 
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If C =constant, then with Cx =ξ , i.e., Cx=ξ ,  
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Except for the factor )/)(/1( ρρ rC in the pressure 
gradient term, equation (105) has the same form as the 
momentum equation governing incompressible constant 
property boundary layer flow. When the pressure 
gradient is zero, i.e., for a flat plate at zero-incidence, 
equation (105) has exactly the same form as the 
incompressible constant property momentum equation. 
In the absence of pressure gradient, the similarity 
transformations developed for the incompressible 
boundary layer flow yield the Blasius equation in 
Appendix 2, i.e. 
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0)()( =′′+′′′ ∗∗∗ fff         (107) 
 
The transformed boundary conditions for an 
impermeable surface are 
 

0)0()0( =′= ∗∗ ff         (108) 

1)( →∞→
′ ∗∗ ηf         (109) 

 
where, the prime denotes differentiation with respect to 

∗η .  
 
Therefore, the solution of the momentum equation for 
the compressible variable property boundary layer in the 
absence of pressure gradient is reduced to the solution 
of an equivalent incompressible constant property 
equation, i.e., the Blasius equation in Appendix 2. In the 
absence of a pressure gradient, the momentum equation 

for compressible boundary layer flow is uncoupled from 
the energy equation. Formally this is true. However, 
determining the physical coordinate, y , from the inverse 
of equation (98), requires a knowledge of the density 
distribution in the boundary layer and therefore the 
solution of the energy equation. Thus, the momentum 
and energy equations for compressible boundary layer 
flow, even in the absence of a pressure gradient, are still 
technically coupled. 
 
Transform of the energy equation 
 
Transformation of the energy equation into 
ηξ , coordinates yields 

 

2
2

2

)(1

)(
Pr
111

ηη

ηηηηξξη

ψ
ρ

ρµ

ρµ
ρρ

ψ
ρ
ρ

ψψ

r

rr

r

C

h
Cx

P
C

hh

+

+
∂
∂

=−

 

(110) 
 
Introducing the Chapman-Rubesin viscosity law in 
Appendix 1 and assuming that rrC µρ  is constant, 
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In the absence of a pressure gradient, equation (105) is 
equivalent to the energy equation governing forced 
convection flow over a flat plate at zero-incidence.  
 
STEWARTSON-ILLINGWORTH TRANSFORMATION 

Assuming that unity Prnadtl number, constant pc , and 
the viscosity linearly related to the temperature, 
Stewartson and Illingworth have independently shown 
that there exists a transformation from a compressible 
flow boundary layer, to a related incompressible flow 
boundary layer ([4][8]).   
 
A stream function that satisfies the continuity equation 
is:  
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The energy and momentum equations are transformed 
to new coordinates X and Y such that: 
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where, a  means sonic speed and subscript 0 
represents some reference state. 
 
The enthalpy function S is defined as:  
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The stream function is replaced by the transformed 
velocities U and V through following relations. 
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Equations (112)-(118) are applied to the momentum and 
energy equations and a new set of equations is 
obtained. It assumed that the pressure is constant along 
the boundary layer and that wall temperature is 
constant.  
 
In order to reduce this system into a system of ordinary 
differential equation, the following relations are 
assumed: 
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where, A, B, a, b, p, and, q are undetermined variables.  
 
Possible similar solutions are possible if: 
 

m
e CXU =  or )exp( 2XCCUe =       (122) 

 
Then, the system of ODEs corresponding to the power-
law velocity distribution of equations my be written: 
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where,  
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SUMMARY 

With the increased complexity of the equations of motion 
for compressible (variable-density), variable-property 
flows, it was natural to seek ways of rigorously extending 
the material at hand for constant-density, constant-
property flows to those cases. Ways were sought to 
transform a compressible boundary layer problem into 
an equivalent incompressible problem. The existing 
solutions could then be transformed back to a solution 
for the original compressible problem. This procedure 
ended in success with some assumptions. We 
discussed three examples, e.g. the Illingworth-Levy 
transformation, the Howarth transformation and the 
Stewartson-Illingworth transformation. 
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APPENDICES 

APPENDIX 1.  VARIATION OF TRANSPORT 
PROPERTIES 

The transport properties of importance in a viscous 
compressible flow are the viscosity, the thermal 
conductivity, the specific heat at constant pressure, and 
the Prandtl number which is the combination of the first 
three properties. 
  
VISCOSITY 

From monatomic gas theory, the viscosity of gases 
depends only on the temperature and is independent of 
the pressure. Experimental measurements confirm that 
this result is essentially correct for all gases. For gases, 
the viscosity increases with increasing temperature. In 
contrast, the viscosity of liquids depends on both 
temperature and pressure and decreases with 
increasing temperature. 
 
Sutherland viscosity law 
 
Experimental measurements of the viscosity of air are 
related with temperature by the Sutherland equation: 
 

1

1

2/3

ST
ST

T
T r

rr +
+

⎟⎟
⎠

⎞
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⎝

⎛
=

µ
µ

        (A.1) 

 
For air between 180 R°  and 3400 R° ,  
 

1S =198.6 R°  

rT =491.6 R°   

)sec/(1058.3 27 ftlbr
−×=µ  

 
Therefore, for air, 
 

)sec/(10
6.198

270.2 28
2/3

ftlb
T
T −×
+

=µ      (A.2) 

 
Figures A.1 and A.2 show the absolute viscosity of 
certain gases and liquids and the power law viscosity 
relationship respectively [2]. 
 

 
Figure A.1. Absolute viscosity of certain gases and 

liquids  

 Figure A.2. Power law viscosity relationship  

 
Chapman-Rubesin viscosity law 
 
Because of the complexity of Sutherland equation, 
approximation formula based on the empirical equation 
called Chapman-Rebesin viscosity law is used instead. 
 

ω

µ
µ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

rr T
TC          (A.3) 

 
A simple and useful case of the Chapman-Rubesin 
viscosity law occurs when C=1 and w=1 in equation 
(A.3). With these values, and using the surface as the 
reference condition,  
 

)(
)(

xT
Tx
w

wµµ =   

 
For an isothermal wall, this reduces to  
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Tconst)(=µ
  

THERMAL CONDUCTIVITY 

The thermal conductivity of gases k  also depends only 
on the temperature and is independent of pressure. The 
variation of the thermal conductivity of air with 
temperature is the same as that of the dynamic 
viscosity. 
 
SPECIFIC HEAT AT CONSTANT PRESSURE 

The specific heat at constant pressure pc for air is 
almost constant for a wide range of temperatures. 
 
THE PRANDTL NUMBER 

The behaviors of transport properties with temperature 
mentioned above make the Prandtl number 

kc p /Pr µ=  essentially invariant with temperature. 
Therefore, it is assumed that the Prandtl number for 
gases is constant. This assumption eliminates the need 
to formally specify the functional variation of the pc and 

k  with temperature. Further, considerable mathematical 
simplification occurs if we choose a unit Prandtl number 
and a Chapman-Rubesin viscosity law with C=w=1.  
 
Figure A.3 shows the variation of k, cp and Pr with 
temperature [2]. 

 
Figure A.3.  Variation of thermal conductivity, 

specific heat at constant pressure, and the Prandtl 
number with temperature  

 

APPENDIX 2. BLASIUS EQUATION- THE FLOW 
PAST A FLAT PLATE WITHOUT PRESSURE 
GRADIENT 

GOVERNING EQUATIONS AND BOUDNARY 
CONDTION 

Continuity equation 

0=
∂
∂

+
∂
∂

y
v

x
u

         (A.4) 

 
Momentum equation 

2

2

y
u

y
uv

x
uu

∂
∂

=
∂
∂

+
∂
∂ ν         (A.5) 

 
Boundary condition 

0=y : 0== vu         (A.6) 
 

∞→y : Uu→         (A.7) 
 
TRANSORMATION USING STREAM FUNCTION 

yu ψ=         xv ψ−=         (A.8) 
 
From (A.5) and (A.8), 
  

yyyyyxxyy νψψψψψ =−        (A.9) 
 
With boundary conditions 
 

0=y      0== yx ψψ        (A.10) 
 

∞→y    Uy →ψ        (A.11) 
 
After similarity transformation 
 

x
Uy
ν

η
2

=      )(2),( ηνψ fUxyx =     (A.12) 

 
0=′′+′′′ fff         (A.13) 

 
with 0)0()0( =′= ff         (A.14) 
 
and 1)( →∞→′ ηf        (A.15) 
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APPENDIX 3. FALKNER-SKAN EQUATION - THE 
FLOW PAST A FLAT PLATE WITH PRESSURE 
GRADIENT  

GOVERNING EQUATIONS AND BOUDNARY 
CONDTION 

Continuity equation 

0=
∂
∂

+
∂
∂

y
v

x
u

        (A.16) 

Momentum equation 

2

21
y
u

x
P

y
uv

x
uu

∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂ ν

ρ
     (A.17) 

 
Boundary condition 

0=y : 0== vu        (A.18) 
 

∞→y : )(xUu→        (A.19) 
 
 
TRANSORMATION USING STREAM FUNCTION 
 

yyyyyxxyy dx
dUU νψψψψψ +=−      (A.20) 

 
With boundary conditions 
 

0=y      0== yx ψψ        (A.21) 

∞→y    )(xUy →ψ        (A.22) 
 
By introducing the transformations 
 

x=ξ      
)(xg

Ay
=η        (A.23) 

 
),()()(),( ηξψ fxgxBUyx =       (A.24) 

 
Then the governing equations yield: 
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ffffUg
BA
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fAB
BA
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BA
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′
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(A.25) 

 
where, 
 

η∂
∂

=′
ff    

ξξ ∂
∂

=
ff    

ξξ ∂
′∂

=′
ff   

dx
dUU =′    

dx
dgg =′  

 
For all 0>x , the boundary condition at infinity 
( ∞→∞→ η,y ) becomes: 
 

)(),()( xUfxABUy →∞→′= ηξψ      (A.26) 
 

or 
AB

f 1),( →∞→′ ηξ       (A.27) 

 
In order to non-dimensionalize equation (A.25) and to 
obtain a simple numerical result for the boundary 
condition at infinity, AB=1 and ∞=UBA3ν  are chosen.  
 
Where, ∞U : the potential velocity upstream of 0=x .  
 
Solving for A and B yields  
 

ν/∞= UA   and   ∞= UB /ν      (A.28) 
 
Then, equation (A.25) becomes: 
 

)()1( 22
ξξβα ffff

U
Ugffff ′′−′′=′−+′′+′′′
∞

  (A.29) 

where, 

)( ′=
∞

Ug
U
gα    U

U
g ′=
∞

2

β        (A.30) 

 
In order for similar solutions to exist, the transformed 
stream function must be a function of η only, i.e., 

)(ηff = . Therefore, the right hand side of equation 
(A.29) must be zero. Furthermore, βα ,  must be 
independent of x . Since g and U were assumed to be 
functions of x only, βα ,  are constants. 
 

0)1( 2 =′−+′′+′′′ ffff βα       (A.31) 
 
with boundary conditions 
 

0)0()0( =′= ff        (A.32) 
 

1)( →∞→ηf        (A.33) 
 
Since βα ,  are assumed to be constants, equations 
(A.30) represent two equations in the two unknown 
functions, U(x) and g(x). U(x) and g(x) can thus be 
determined. From 

)(1)(22 2
2

′=′−′=−
∞∞∞

Ug
U

U
U
gUg

U
gβα     (A.34) 

 



Providing 02 ≠− βα , integration of equation (A.34) 
yields 
 

xg
U
U )2(2 βα −=
∞

       (A.35) 

 
A second algebraic equation for U(x) and g(x) is 
obtained by considering 
 

gg
U
UU

U
gUg

U
g ′=′−′=−

∞∞∞

2

)(βα     (A.36)  

 
Multiplying both sides of equation (A.36) by U ′ and 
rewriting results in: 
 

g
g

g
gU

U
g

U
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ββα
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Integration of equation (A.37) results in: 
 

ββαβ
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KggU
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      (A.38)  

 
Simultaneous solution of equations (A.34) and (A.38) 
yields 
 

mxconstxK
U
xU )(])2[()( 22

2
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βα βα     (A.39) 

 
and 

2/1

)2()( ⎥⎦
⎤
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⎡ −= ∞

U
xU

xg βα       (A.40) 

 
Similar solution of the steady two-dimensional 
incompressible boundary layer exist if the potential 
velocity U(x) varies as a power of the distance along the 
surface. Providing 0≠α , without loss of generality, 

1=α  is chosen. In addition, by introducing 
 

β
β
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=
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m  or  
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U(x) and g(x) then become 
 

mxKxU =)(   and  
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where, 

 
m

m

m
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21       (A.43) 

Using the results for A and g(x) in the original 
transformations, yields the appropriate independent 
similarity variable 
 

x
Umy
ν

η
2

)1( +
=        (A.44) 

 
In the above analysis, the cases where 0=α  and 
where 02 =− βα  were excluded. 
 
APPENDIX 4. FORCED CONVECTION 
BOUNDARY LAYER WITHOOUT PRESSURE 
GRADIENT– PARALLE FLOW PAST A FLAT 
PLATE 

GOVERNING EQUATIONS AND BOUNDARY 
CONDITION 

 

Figure A.4.  Forced convection boundary layer flow

 
past a flat plate [2] 

 Continuity equation 

0=
∂
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+
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y
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x
u

        (A.45) 

Momentum equation 
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Energy equation 
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Boundary condition 

0=y  0== vu          (A.48) 
 

wTT =   or 0=
∂
∂
y
T

       (A.49) 

 
∞→y  ∞→Uu   ∞→ TT       (A.50) 
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where, the subscript ∞  indicates conditions in the 
inviscid flow at the edge of the boundary layer. 
 
SIMILARITY TRANSFORMATION 

Using the similarity transformations 
 

x
Uy
ν

η
2

=      )(2),( ηνψ fUxyx =     (A.51) 

 
0=′′+′′′ fff         (A.52) 

 
with 0)0()0( =′= ff         (A.53) 
 
and 1)( →∞→′ ηf        (A.54) 
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ηη
     (A.55) 

 
Introducing the non-dimensional temperature 
 

∞

∞

−
−

=
TT
TT

w

θ         (A.56) 

 
Then, equation (A.55) becomes 
 

2PrPr fEf ′′−=′+′′ θθ        (A.57) 
 
with 1)0( =θ   or 0)0( =′θ       (A.58) 
 
and 0)( →∞→ηθ        (A.59) 
 
where, the appropriate Eckert number is defined as 
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TTc
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       (A.60) 

 
Equation (A.57) is a second-order linear non-
homogeneous differential equation subject to two-point 
asymptotic boundary conditions. This equation can be 
divided by two equations by superposition principle. 
 

)()()( 21 ηθηθηθ EK +=       (A.61) 
 
Homogeneous equation 
 

0Pr 11 =′+″ θθ f         (A.62) 
 
with 1)0(1 =θ   and 0)(1 →∞→ηθ      (A.63) 
 
Non-homogeneous equation 
 

2
22 PrPr ff ′′−=′+″ θθ        (A.64) 

 

with 0)0(2 =′θ   and 0)(2 →∞→ηθ      (A.65) 
 

SOLUTION (ANALYTICAL SOLUTION) 

Both the homogeneous and the non-homogeneous 
boundary value problems are amenable to analytical 
solution.  
 
Homogeneous solution 
 
The solution of the homogeneous problem is 
 

∫
∫
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(A.66) 

where, ∫
∞

=
′′=

0

Pr
0 ))(((Pr)

ξ
ξξα df  

 
For the special case of unit Prandtl number 1)1(0 =α , 
equation (A.66) reduces to  
 

)(1)(1 ηηθ f ′−=         (A.67) 
 
Therefore, when there is heat transfer at the surface the 
non-dimensional temperature distribution has the same 
form as the non-dimensional velocity distribution. 
 
Non-homogeneous solution 
 
The non-homogeneous boundary value problem for the 
adiabatic wall is solved using the method of variation of 
a parameter. 
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(A.68) 
 
For the special case of unit Prandtl number, this result 
reduces to 
 

))(1(
2
1)( 2

2 ηηθ f ′−=       (A.69) 

 
Total solution 
 
Using the condition 1=θ  at 0=η  
 

)0(1 2θEK −=         (A.70) 
 
and equation (A.61) becomes 
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For the special case of unit Prandtl number, 
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APPENDIX 5. FORCED CONVECTION 
BOUNDARY LAYER WITH PRESSURE 
GRADIENT AND NONISOTHERMAL SURFACE 
CONDITION 

GOVERNING EQUATIONS AND BOUNDARY 
CONDITION 

Continuity equation 
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+
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y
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        (A.73) 

Momentum equation 
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Energy equation 
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Boundary condition 

0=y  0== vu          (A.76) 
 

)(xTT =           (A.77) 
  

∞→y  ∞→Uu   eTT →       (A.78) 
 
SIMILARITY CONDITION FOR THE VELOCITY FIELD 
(FALKNER-SKAN EQUATION) 
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SIMILARITY TRANSFORAMTION 
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TRANSFORMED EQUATION 

0)1( 2 =′−+′′+′′′ ffff β         (A.82) 
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or 
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By introducing a non-dimensional temperature: 
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w
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Further assumption is made such that the surface heat 
transfer is sufficiently small that it does not change the 
temperature in the inviscid flow at the edge of the 
boundary layer. Thus, ∞= TTe  
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CONDITION FOR THE EXISTENCE OF SIMILARITY 
SOLUTION 
 

const
dx
dT

TT
x w
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=
−

    and   const
TT
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    (A.88) 

 
 n

ew xTTT 1=−        (A.89) 
 
where, 

1T  : a constant associated with the initial temperature 
distribution (n=0 : Isothermal condition) 
 
Using this assumption, equation (A.87) becomes 
 



22
1Pr)1)(2Pr(Pr fxEfnf nm ′′=′−−+′+′′ −θβθθ  

 
where, 
the Eckert number is 1

2 / TcUE p∞=  
 
The associated boundary conditions are 
 

0)0( =θ     1)( =∞→ηθ       (A.90) 
 
SOLUTION 
 
From equation (A.89), there are two classes of similar 
solutions of the energy equation for forced convection: 
those with viscous dissipation, and those without viscous 
dissipation 
 
Low speed incompressible flow (Neglect of viscous 
dissipation) 
 
In this case, the Eckert number is small, since ∞U is 
small. Under these conditions, the viscous dissipation on 
the right hand side can be neglected.  
 

0)1)(2Pr(Pr =′−−+′+′′ fnf θβθθ      (A.91) 
 
1) n = 0 (isothermal wall)  
 
This equation reduces to the same form as the 
homogeneous solution for the flat plate isothermal wall 
case, i.e., equation (A.62). Although equation (A.91) is of 
the same form as equation (A.62), its solution )(ηθθ =  
is not the same. Here, the non-dimensional stream 
function )(ηf , given by the solution of the Falkner-Skan 
equation in Appendix 3, depends on the value of β , and, 
in turn, the solution of equation (A.91) also depends on 
the value ofβ . 
 
2) 2=β  
 
Similar solutions of the energy equation exist for 
arbitrary wall temperature variations.  
 
3) 0≠n  and 2≠β  
 
The similar solutions of the energy equation depend on 
both the pressure gradient β  and the surface 
temperature parameter n . 
 
When the viscous dissipation is not neglected 
 
Similar solutions of the energy equation exits only if  
 
2m-n=0.  )2/(2 ββ −=n   and 2≠β  
 
In other words, similar solutions of the energy equation 
exist for only one wall temperature variation. 
 

1) 20 << β   
The surface temperature increases in the direction of 

the flow 
 
2) 0<β  

 The surface temperature decreases in the direction of 
the flow 
 
3) 0=β  and 0=n  

 Constant surface temperature 
 
APPENDIX 6. SUMMARY OF GOVERNING 
EQUATIONS FOR SIMILAR COMPRESSIBLE 
BOUNDARY LAYER 

Case 1: The low speed compressible boundary layer 

 

0ˆ ≠β  and 0=eM

 Equations

 0)(ˆ 2 =′−+′′+′′′ fgfff β  
0Pr =′+′′ gfg  

 
1.1 Adiabatic Wall analytical Solutions (It can be solved 
using the result of Falkner-Skan equation) 
 

0)1(ˆ 2 =′−+′′+′′′ ffff β  
1)( =ηg  

 

 
1.2 Isothermal Wall analytical Solutions (It can not be 
solved) 
 
Comments: 

1) 
eh
hg =)(η  

 
2) The viscous dissipation terms are neglected 
 

Case 2: The compressible boundary layer on a flat 
plate 

 

0ˆ ≠β  and constM e =  
 
Equations:  
 

0=′′+′′′ fff  
)Pr)(1( ′′′′−=′+′′ ffgfg σ  

 
2.1 Adiabatic Wall analytical Solutions (It can be solved 
for Pr=1): 
 

0=′′+′′′ fff  
1)( =ηg  (Busseman Integral) 

 



2.2 Isothermal Wall analytical Solutions (It can be 
solved) 
 
2.2.1 1Pr =  
 

0=′′+′′′ fff  
fggg ww ′−−= )1()(η (Crocco integral) 

 
2.2.2 1Pr ≠  
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Comments: 

1)
eH
Hg =)(η

 
2) The viscous dissipation terms are included 
 
3) For 1Pr = , 1=awg  

   For 1Pr ≠ , )
2
1)0(( 2 −= θσawg  

 
Figure A.5 presents the effect of Mach number on the 
enthalpy profiles for a flat plate [2]: 
 

 
Figure A.5.  The effect of Mach number on the 
enthalpy for 0ˆ =β , 6.0=wg , and Pr=0.723 

 Figure A.6 shows the comparison of experimental and 
theoretical velocity profiles for the compressible 
boundary layer on an adiabatic flat plate [2]: 

 Figure A.6.  Comparison of experimental and 
theoretical velocity profiles for the compressible 

boundary layer on an adiabatic flat plate 

 

Case 3:similar compressible boundary layer with 
unit prandtl number 

0ˆ ≠β , 2

ˆ

)(
β

ξconstM e = , 1Pr =  

 

 

Equations: 
0)(ˆ 2 =′−+′′+′′′ fgfff β  

0Pr =′+′′ gfg  
  
3.1 Adiabatic Wall analytical Solutions (It can be solved): 
 

0)(ˆ 2 =′−+′′+′′′ fgfff β  
1)( =ηg  

 

 
3.2 Isothermal Wall analytical Solutions (It cannot be 
solved) 
 
Comments: 
 
1) No analytical solutions for non-unit Prandtl number 
 
2) The viscous dissipation terms are included

 

 
Case 4: The similar hypersonic compressible 
boundary layer with nonunit prandtl number 
 

0ˆ ≠β  ∞→eM  
 
Equations:  

0)(ˆ 2 =′−+′′+′′′ fgfff β  
)Pr)(1(2 ′′′′−=′+′′ ffgfg  

 
4.1 Adiabatic Wall analytical Solutions (Cannot be 
solved): 
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4.2 Isothermal Wall analytical Solutions (Cannot be 
solved): 
 
Comments: 
 
1) ∞→eM  yields 2=σ  

2) 1)( ≠ηg  for the adiabatic wall 
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