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DUANE

BONING:

OK, so on Tuesday, Hayden brought us up through analysis of variance, which had an implicit model of the
process hidden underneath. It was mostly focused on the idea of, are there effects if you make different kinds of
conditions? What we want to do is pick up on that, but get back to the model a little bit more, talk a little bit more
explicitly about ways to express, from an empirical point of view, experimental data or other kinds of run data
that we might have.

So I'm going to pick up a little bit on this idea of modeling effects when we've got multiple inputs. Much of the
ANOVA analysis was described for a single input. And then what we will do is look at linear and quadratic models,
and other kinds of models for fitting of that kind of data. We'll talk a little bit about calculation or fitting of model
coefficients, both from a fairly powerful and general regression idea, but also, we'll start to build up the lingo for
design of experiments.

One advantage of a design of experiments approach is that there are shorthand ways for rapidly assessing and,
in fact, building models based on experimental data points in the selection-- careful selection of where you
sample from your process or your conditions. So things like contrast will be perhaps a new terminology for you
that summarize a little bit what it is we're trying to do with some of these design of experiments, or DOE.

So to pick up a little bit, here's, again, the injection molding data. We've looked at this from a number of different
perspectives, and we'll look at it a little bit more today. So we've got some dimension that we're measuring with
an injection molding, where we have a couple of different parameters-- one of which might be the velocity that
we're using for the injection.

Another may be the whole time. Perhaps these are minutes-- one minute, two minute. And one would ask, is
there an effect from a point of view of ANOVA? And then we can look and compare things like the spread within
that particular condition, say, at one minute-- compare this spread and its mean to this spread and its mean, and
make some assessment of whether there is a statistically significant effect.

But we might also want to build up a causal relationship, and actually a functional relationship between hold time
and dimension. And then the question becomes, well, what do we use to fit such a set of data with? Would we fit
it with a line? Would we fit it with a curve that looks something like that, a curve something like that? What is
appropriate? What are appropriate kinds of functions to use for fitting of these things?

Now, hopefully you've got some intuition. And I'm not going to try to destroy any of that intuition today. I'm just
going to try to extend it. One question for you-- hopefully you have an intuitive feel-- would you be justified in
fitting this blue curve, in most cases, to this data? Well, I've now made it a red curve. Yeah?

AUDIENCE: Well, [INAUDIBLE].

DUANE

BONING:

Yeah.

AUDIENCE: So [INAUDIBLE] a physical model, or something, [INAUDIBLE]



DUANE

BONING:

Good-- because usually the answer is it depends, and you already got the depends in there. If all you had was the
pure data, certainly, you've only got really two sample points, so all you can fit is a line. But your intuition is very
good there. If you have a lot of physical knowledge that, in fact, the relationship would have to be parabolic, two
data points might give you enough information to be able to justifiably fit some more complicated function.

We're going to be mostly focusing on empirical data and just sort of the limits of what you can infer from the data
although. We're not going to be, at least today, trying to mix in both the physical functional dependencies and
empirical. So one key question then is, what functional form might be justified by the data? In this case, if I've
only got two data points, maybe it's only a very simple linear model.

If I had more data, well, I might have enough to fit parabolic or other, more complicated data. But in addition
now, when we start to go to two inputs-- this is this is, in fact, the same data, where we have not only hold time,
as we did on the previous screen, but we may also be playing with the velocity and then doing some number of
replicates-- something like 14 or 15 runs at the low condition for velocity and low condition for hold time-- and
then measure the data.

And what we have here is conditions where we've changed both of those conditions, and it may well be the case
that these two inputs interact-- that the effective velocity gets amplified when I've got a longer hold time than a
shorter hold time. So it's not necessarily just an additive model. So we also need to mix in this issue of
interaction, when we start thinking about model form-- not just sort of the functional dependence terms of
powers or for the shape of the dependence on a single input, but also when we have multiple inputs, if there are
interactions between them.

So we can also turn this question around. I can say, depending on how much data I have, what kind of model
might I fit? Can turn it around and say, I would like to be able to fit a model up to a certain kind of form-- you can
turn it around and ask the question, what data points do I need? How much data do I need, and what's the
location of those data points in order to be able to fit different functional forms?

And that becomes the design of the experiment in order to be able to meet your modeling or estimation needs.
So what we'll be doing is dealing with some models of the process, where we have multiple inputs or multiple
treatments-- not just different conditions or levels at these, but in fact, we may have multiple different kinds of
treatments, such as the velocity and the hold time.

And so in general, we might talk about processes that have k input. So in our previous case, we had two inputs.
And then we can look at different combinations of the data, depending on how many levels we pick for each of
those inputs. So a level is simply where you're sampling along that axis of that particular factor or input.

And we'll be talking especially about full factorial models, where we're looking at every combination of the
discrete selection of those levels for those factors that we're interested in. So if I've got a two level selection or
choice for each of our factor levels, then, in general, we can have 2 to the k combinations of different discrete
sample points, different discrete treatment sets.

You can extend this, of course. You might be looking at tree level experiments for each of our factor, and then I
would have 3 to the k combinations. And you'll detect a trend here that's not especially encouraging. What
happens as k gets big? We have exponential growth in the number of experimental points that we need.



Similarly, as the number of levels go up, you can fit more powerful models, but again, you need a lot more data
fairly rapidly. Today we'll be just pretty much focusing on relatively simple small numbers of k and small
numbers of level. In fact, traditional 2 to the k design is what we'll be talking the most about.

When you get back from spring break, we'll also come back to clever approaches out of design of experiments for
subsampling the space-- basically, not having to explore all of the combinations because, in fact, all of the
combinations may give you more data and fit a more powerful model than you're even really interested in.

If I were doing, say, a 3 to the k, I might be able to actually estimate all kinds of very subtle three-factor
interactions or four-factor interactions, but I might actually not believe they exist. I may had prior knowledge
they don't exist. And so we'll look at reduced models next time.

There is kind of just a general question. Why would you even want to model or use more than one input? Why
wouldn't you want to simplify your process, make it as simple as possible? Why might more than one input be
especially important for manufacturing process control? These are fairly obvious, so don't overthink too much.
Why would you need more than one input?

AUDIENCE: Because you have more than one input in the world--

DUANE

BONING:

You have more than one input in the real world. Why do you have more than one input in the real world?

AUDIENCE: [INAUDIBLE] complex. You can manipulate them in a number of ways, so [INAUDIBLE] process might have
temperature and pressure, different chemical baths you could use, [INAUDIBLE] processing.

DUANE

BONING:

Good.

AUDIENCE: So they all create slightly different outputs, but [INAUDIBLE] very similar outputs at the same time.

DUANE

BONING:

Yes. OK, so I think you've touched on both of them there, as a freeform spoke. One is you often have more than
one output. So it would actually be odd if you were trying to achieve just one parameter-- say, a length
parameter-- with a dozen different inputs all at once. In fact, that would be a really challenging design problem.

Often, they do interact, but very often, what you're actually after are fairly good solid one-to-one
correspondences where, if I play with this knob, I have good control over this output. So you often strive for
almost univariate, very simple direct control. You can't always achieve that, and so often you've got a multiple
input and multiple output problem with interactions.

But even if you only had one output, you might actually want two inputs, because one of them may actually give
you control over the mean of the parameter and another input might let you deal with, or compensate for, or
generate, or change the variance of the process. And so it's actually very nice to be able to deal with the process
robustness, to be able to freely recenter the process without changing your variance, for example.



So just highlighting that the practical world-- you often do have more than one input, and there are good reasons
where you can actually use those. So we're going to mostly be dealing with empirical models here, and here's an
example of a fairly simple general linear model. Question? Is there a question from Singapore? Somebody maybe
pushed their button? [INAUDIBLE] like the microphone was-- we got a close-up view of you. We know you're
awake, though-- good.

OK, so here's just a quick overview of the kind of models that we'll be looking at. We've got some output. Here
it's expressed in a univariate case. We'll extend this to multiple outputs in a minute. But I might have a single
output, and the true value here may be eta. Again, I'm using a little bit the Greek to indicate truth, if you will.

And it's got some overall mean. We might model that with a single coefficient, some beta 0. And then it's got
single factor direct dependencies on some x sub i input. So x sub i here is indicating which factor it is. So I might
have x1 and x2 would be a two-factor-- two different kinds of input, sort of like our injection molding problem. I
might have a direct linear dependence and coefficient on each of those.

And then we'll also be looking at interaction terms, ways of looking at a synergistic effect between the two of
these terms-- still first-order. These are only direct x1, x2 kinds of interactions, but we'll see that actually gives
you quite a bit of power for dealing with some interesting behavior. Then we'll also talk about are these higher
order terms.

So in truth, the model may have a more complicated functional dependence. What we're hoping is, in many
cases, that the linear version of the model captures most of the behavior, and that these higher order model
terms are smaller effects. And so often, we'll actually be ignoring these higher order terms, absorbing whatever
errors there are as a result of that, and referring to those as a model form or model structure error, and
distinguish that from residual error or other kinds of experimental error, or just replication error.

So let's see-- couple other definitions just that we've got in here-- in here, you'll notice the k subscript indicates
the number of factors, just like we were describing before-- two-factor, three-factor kinds of experiments. And
then we often are forming sums over some particular-- either factor or input levels within those factors. So I'll try
to be a little bit careful on what we've got then.

So with that simple two-order or two input model, where k is equal to 2 in this case, we've got something that we
might try to use with our injection molding case. That was a two input model-- injection velocity and hold time.
We've got four coefficients. Quick question for you-- how many data points do you think you need at least a
minimum of in order to be able to fit those four coefficients?

If I did just one experiment and got one output, would that be enough data to estimate four coefficients? No.
Four? Or was that just a wave of your hand?

AUDIENCE: No.

DUANE

BONING:

It was close.

AUDIENCE: Yeah.



DUANE

BONING:

So this is a simple extension of that linear case. If you had only one input and you wanted to fit a line, you would
need at least two data points. Yeah?

AUDIENCE: [INAUDIBLE]

DUANE

BONING:

Oh, OK.

AUDIENCE: Because that's a zero--

DUANE

BONING:

Yes.

AUDIENCE: [INAUDIBLE] relative to your [INAUDIBLE]?

DUANE

BONING:

Yes. That's a good point. So if these are normalized in some way, such that there is a 0 in between, such that also
the average of these are 0, then this would be the mean. So this would be more general-- some offset term. It
may not necessarily be the mean-- good point, good point.

OK, so part of the question is I think there's-- it's fairly clear intuition that you're probably going to need at least
four data points in order to be able to fit a four-coefficient model. We need at least that number, but there are
some additional subtleties. In this case, we've got at least two factors, so we know we've got two factors at work
here.

And I've got to at least sample across both of those input factors of both of those treatment things. But then
there's a question, especially with this crazy interaction term-- how many levels do you really need in each case?
Notice also here that, if I only have four data points, there's no way for me to really estimate higher order terms.

And we'll also chat a little bit, because if I have exactly four data points, it's also not easy for me to estimator
terms, because if I have four data points, I can exactly fit-- I get a direct solution for the four coefficients. And I
can perfectly fit those-- I may be wrong in terms of actually interpolating between those, but I have a direct
solution for those four coefficients.

So part of the thing we'll get at is, how might you select levels and data samples so that you have more data to
be able to do additional inferences on your model-- things like, what is the actual confidence level I have that an
effect is real? What's my estimation not just on a point estimate for a model coefficient-- a beta 0 here or a beta
1-- but also, what is an integral estimate for those kinds of coefficients? So we'll get to many of those things.

OK, here's back to our injection molding case-- dimension versus old time. I might try to fit that with a very
simple one input linear model, some offset beta 0 and some beta 1 linear dependence. And we've already said it
looks like I'm going to need at least two levels. I'm going to label those with an x underscore minus and an x sub
plus-- so a high level and a low level.

We'll actually talk about different labeling strategies for these things that make some of the calculations a little
bit easier. So if I, again, do just one trial at each level, what I've got-- there's a little bit more notation for us in
very simple vector notation-- what I've got is one factor, two levels, if I'm just doing a one-input model.



So what I will have is two measurements, an eta 1 and an eta 2. Those are my two actual sample points. And
what I've done is run them at two different conditions. So in fact, these indicate the two different conditions that I
ran at. And what I'm trying to do is fit the beta 0 and the beta 1 for this case.

Now, because I've got exactly the right amount of data, I'm going to have to estimate that the noise is 0, as we'll
see in just a second. Now, I can express the two sets of samples-- so I've got, basically, an eta 1 is equal to some
beta 0 plus beta 1x at the low condition. And I've, similarly, got eta 2. I'm estimating as beta 0 plus beta 1 at the
high condition.

That's just a system of two equations I can write it in matrix form, as shown down here. So I've got this condition
times my two coefficient. So I've got my beta 0 and my beta 1. That's my first equation, giving me my eta 1-- and
similarly, for my eta 2.

Now, since we've got exactly the same number of model coefficients and model runs, my x is square, and I've
got a direct solution to this equation-- where, again, eta is 0, because I don't have any replicates, I don't have
any noise, and so I can simply directly invert that and solve directly for my coefficient. So my purpose here was
both to remind us that there is some vector notation that just follows what you would think of naturally, and in
the special case where you've only got exactly just barely enough data, there's a direct solution.

So that's pretty straightforward. But what we'd often like to do is remember that there's noise in our process--
that, if I were to, in fact, run at the same condition multiple times, I've probably got some variance in there. It
may be measurement error. It may be underlying process variation.

So what do we do when we've got replicates? First off, we probably want to design the process or the
experimental design for the process so that we do sample at multiple-- at the same condition multiple times so
we can estimate these variances. I'm going to need that information for things like confidence intervals on the
coefficients.

So how do we deal with data where there is some spread, even at the same factor level for hold time? Well, now
we're into an over-specified set of linear equations. I've got multiple sets of data for the same input. I've got
multiple y's. I got multiple outputs.

And what we'll generally be doing is trying to do our best fit in the same intuitive way you've probably been
doing regression modeling or fitting of lines to data for a long time. We have a general approach of trying to get
the best fit in a conceptual approach of minimizing some error metric. The most standard one is a sum of
squared deviations of your data from your prediction.

So we often talk about least squares or minimum squared error data sets. So in those kinds of conditions, what
we're trying to do is find the data not and the one that gives us the best line that, in aggregate across all of our
data, minimizes the sum of all squared error terms, where each error term-- each e sub i is-- so this would be my
e sub i term. When I ran run sub i for input at, let's say, level 1 for my single factor here.

This is my prediction. This is my data. So I've got a deviation between my best prediction at that input level and
my actual measurement. I'm squaring that, and then what we're looking at is the sum of all of those across all of
my data. And you can formulate it as sort of that optimization problem and do a search for the best beta 0, beta
1, conceptually.



Turns out, in the simple linear cases, the power of linear models is that one can still solve the matrix formulation
of the problem using a pseudo-inverse in the over-specified case, where I've got multiple samples at the same
condition. And we need to do that, because now, if I've got multiple rows where I've sampled the same conditions
multiple times, my x matrix is no longer square, so I can't do a direct solution.

There's an aside here, which is simply the derivation of this relationship, this beta solution, based on the
minimum squared error condition. Yes, question?

AUDIENCE: Yes. For the previous equation, isn't it beta 0 plus beta 1 time x based on beta 0 minus beta 1 time x?

DUANE

BONING:

Good. Yeah. I guess I could change the sign in the middle, but I probably shouldn't do that. Yeah, that should
probably be a plus there. Thank you. So we could, again, formulate our problem just to give you a quick sense of
where that funky description of this-- using this pseudo-inverse idea comes from.

Again, if I have my linear model, I can express based on my measured data. These are my different conditions
and these are my model terms. I've got a way to express the error for all of my runs, and now the squared error
can be written in matrix form as the transpose of that error vector times the error vector.

And now I simply substitute in, and you get something like that. And now you can do the derivative. What we're
looking for is the point at which this quadratic error is minimum. So I can do the derivative there, and at that
point, I'm looking for the bottom of that squared error curve, that quadratic error-- which, if I differentiate this, I
get this.

And now I can simply solve, and then, when you go ahead and plug that in, that drives for us-- this funky thing,
where you take your data condition x transpose x, then you do the inverse of that times the x transpose with
your measured outputs to solve for beta. So there is a matrix algebra formulation here that's basically giving us
the best minimum error fit for all of our data. So that's a very nice, powerful general linear regression result.

Here's another picture of the same thing. This is the same idea-- not the derivation, but what I meant by when
I've got replicates. Again, this is my measured vector. These are my conditions. Again, I'm either running at the
low condition or at the high condition for each of my-- for my single input here. I've got two coefficients, so my x
times my beta, again, gives me my beta 0 plus my either x high or x low times beta 1. And for each case, I get
some measured output.

And the point is now, if I have replicates-- there's an x low, here's another x low, and if I continued on, there may
be multiple places where my conditions were exactly the same-- oops-- my coefficients are exactly the same, but
I get different measured outputs. So that's how my-- what used to be my square matrix becomes non-square.

I'm filling in additional data rows as I add more replicates. And so in that case, I still got the simple linear model,
but now I have to use not a direct inverse, but I got to use this sort of pseudo-inverse in order to fit my beta
coefficients. OK, so that's the very powerful, general linear regression kind of approach, and it's based on
minimizing a squared error term.



But there's a lot more intuitive way of looking at this and some other observations that make estimation easier,
and also connect up, I think, very nicely with our intuition. One important point is, when I've only got two levels--
so our one input, two levels-- we know a line has to fit that data. And if I've got replicates, the line actually has to
go through-- provably, and we'll see a very quick little derivation-- the line has to go through the mean at each of
the data points, my replicate points, at each of my two levels.

So in order to fit the data, one is you could put it all on a big matrix and send it off to Matlab, or Excel, or
whatever to do this big matrix pseudo-inverse, or you can simply calculate, look at your data under your low
condition, your data under your high condition, find the mean, and your line has to go through the mean of those
two conditions.

So one of the two might be a little bit easier on a quiz. And this is simply working out and showing you, if, in this
simple two-input condition, where I only had two data points, then you could see how this works. But with the
mean, what's very nice is now this is the mean of my output, and what that gives you is a direct expression using
that fact to be able to calculate your offset term and your beta 1 term.

Let me see. Am I going to do this yet? No. So here's a simple application of that for our real data, this injection
molding case. Here now I'm doing something kind of sneaky. This is I'm treating all of that injection molding
experimental design as if I'd only done an experimental design in hold time. So what's really hidden inside of this
spread of data is it is all replicates at the low value x minus for hold time.

Similarly, these are replicates at x plus, but they're not really good pure replicates, because other things were
changing. First off, time might often be changing, but what was going on in here is I was also playing with the
injection velocity at the same time. So in this case, this is saying I'm going to treat these other things that might
be changing, like injection velocity, as just noise factors. They're what contributes to the spread at the condition
that I'm actually interested in.

And so you will often do that. I'm just trying to fit a very simple first-order linear model, just relating my one
factor here of hold time to my output. And it's going to have some variance and error in my estimate because of
all these other higher order terms that I'm not including, other factors that I'm not including, pure replication
error, measurement error.

But what I am trying to do is understand as closely as possible the effective that single factor. So very often, I
really do want to know just the hold time effect fact, even when it's contaminated with or spread out with these
other effects. This is just showing, for that actual data, I can fit my two means for the spread, and then fit a very
simple linear model.

Now, in this case, I'm treating hold time as kind of a continuous factor, so you might think, if these are hold time
in minutes, now you can interpolate. And I could ask, what I think the hold time-- or the effective on my
dimension might be at 1.5 minutes? So I'm interpolating within my data. I could also extrapolate and ask
questions. Well, what do I think it'll be out here at 2.5 minutes? That might be a little bit risky, and we'll talk
about that a little bit in a later lecture, when we talk about the confidence intervals.



But at another point I want to make is this same picture would apply even if these weren't continuous
parameters. And I find it easier to think about the problem in terms of continuous parameters, because you're
often changing a pressure, or a velocity, or a hold time, and looking at a continuous variation in some output
parameter.

But a very important point that I do want to make here is, if I were to use exactly the same chart and relabel the
axes and say something like, this is the dimension-- this is still dimension-- and I'm doing injection molding, but
here I'm using it from a tool from different manufacturers. So here, I run the tool on-- I don't know-- Fritze Inc's
injection molding tool, and over here it's on Xenon Corp's tool.

I could have essentially the same model, the same formalism if these were discrete levels, discrete choices in
some factor. Here my factor is, which choice of tool would I want to be making? I want to know, is there an
effect? I maybe even want to build a model with model coefficients for the effect, depending on what factor level
I pick.

Now, if these were discrete choices, it no longer makes sense to interpolate or extrapolate, but I do want to just
highlight that the same formalism-- especially for factorial designs-- applies to both continuous parameters and
discrete parameters. I'm going to come back to that a little bit when we talk about what might-- slightly different
ways of looking at the model coefficients be in those cases. But I just want to remind you or highlight that you
can use these for both continuous and discrete kinds of designs and factors.

OK, so continuing with our plan here-- we've talked about multiple inputs and effects-- what I want to do next is
say, if I do have multiple inputs, how does our ANOVA formalism apply to being able to decide whether both
factors matter, or not, or three factors, which factors actually matter. And based on my observations, do I think
that that factor actually has an effect or not?

So I want to derive first real quickly, or show for us the different ANOVA formalisms in these cases. And then we'll
come back a little bit more to the estimation of these model coefficients. Oh, what happened? There we go. OK.
So back to our injection molding problem, now with two factors, where we have the velocity and we have the hold
time-- and this is where I said I was being a little bit sneaky when I was showing you the one factor data.

In fact, the setup here was to do four different combinations of these two factors-- two-factor, two-level
experimental design-- with replicates at each factor-- something like 14 or 15 replicates. And here nothing was
intentionally changing, so these are more like pure replicates within that set of experimental conditions.

And what we can do is look at, in that case, where I've got pure replicates, what is the average at that test
condition-- so test condition 1, where it was low and low for the two factors, and so on for test condition 2, 3, and
4. And now we can ask the question-- not just in the univariate case, but in the multivariate case, what kind of
model works?

And this is actually a description of the model that might be more appropriate if they were discrete choices and
you weren't trying to do interpolation. But it's also implicitly the model that we're using for ANOVA analysis,
because the ANOVA doesn't care whether it's a continuous parameter or a discrete parameter that we're using.

So the basic idea for a two-- this is a two-factor kind of model. This is very close to what we saw with the ANOVA
on Tuesday. One of the factor might be-- or treatment effect that we might be looking for might be the velocity
effect. The other might be the hold time effect, and then we may be looking for interactions between the two.



And the picture you should have in your mind is that what we're going to try to do is model this with an overall
mean-- some mu-- and then we're asking the question-- think back to the ANOVA question-- is there a deviation
from the grand mean, from the overall mean, if I have velocity at the high condition? Is there a statistically
significant shift up for a high setting? And similarly, is there a statistically significant low effect?

So is there an up or down shift, depending on whether I pick the high or low condition for velocity? And similarly,
I would ask the question, is there an effect-- a beta 1 effect or a beta 2 effect-- depending on whether I selected
the low-- I guess this is the high-- the high condition or the low condition for that actual variable?

So these are discrete offsets, depending on whether I was at the low or the high condition. So i indicates, in our
earlier notation, either the plus or minus. Here, we're switching rotation a little bit to just be a numerical index--
either 1 or 2 in this case, but if I had multiple levels of that factor, I could extend that. I can have little deltas with
a coefficient that would go for each delta, depending on the discrete value that I picked for that level. Yeah?

AUDIENCE: What if it's a shift of variance, and not a shift in the mean altering one of them?

DUANE

BONING:

It's a good question. The question was, what if it's a shift in variance? Here we are looking for just-- we're just
modeling the mean value of the output with this. You could similarly start looking at building up models of
variance. You would probably not be thinking of it as additive variance terms in those cases, so you might also
end up doing some other kinds of transformations on your data to get to additive models of variance.

But basically, if I had enough data, you could start to try to model variance. If you think back to the ANOVA
formulation, the simple ANOVA is all assuming your variance is exactly the same across all of your conditions.
There are wonderful books on more powerful modeling and how ANOVA extends to those.

In fact, one of my favorites-- I lent it to Hayden-- is a book by George Milliken, the title of which is Analysis of
Messy Data. And it deals with all kinds of wonderful conditions-- not only modeling of variance, but also when
you've got very complicated design situations with partially replicated, data unbalanced design. You run the
whole experimental design and you're missing a data point, because the experiment crashed-- what do you do
now?

Looks at every possible thing-- so here, we're really looking just at mean modeling. Just to finish this up, I should
also point out that there would be discrete offsets, depending on every combination of our interaction factors as
well. And so I might have discrete model terms for those as well.

Now, an important point just to make here is that, in this kind of a model-- and it'll maybe become clearer a little
bit later-- each of these model coefficients-- this tau 1 and a tau 2 effect, for example, for the velocity-- they're
not really independent. And this gets back to, I think, your question about, in this model, this-- if I were modeling
that as a beta 0 term, this really is the mean, and that imposes an additional linear constraint on my other
coefficients. And in particular, that tau 1 and tau 2 would have to be equal and opposite here.

This is a great model for being able to conceptualize and plug in, depending on what factor levels you have. You
just have to be careful in fitting the model, and recognize that, in this kind of a formulation, there's some implied
dependencies within this-- in particular, that each of the factor levels-- factor effects have to be 0 mean overall,
and the interaction terms, similarly, have to be, in aggregate, 0 mean.



That kind of makes sense, because-- think of the case where I've got two inputs, two outputs-- or one output, got
my two factors-- velocity and hold time-- and I'm just doing two levels for each. I've got four different conditions.
I may have replication, but I've only got four different conditions. How could I possibly fit a mean, two taus for
factor 1, two coefficients-- taus for-- or betas here for factor 2, and four interaction terms?

That's four, five, six, seven, eight-- nine model coefficients, four data points. So clearly, there's got to be some
additional constraints on the model coefficients hidden under that. OK, so that's one way of looking at the
experimental design and the data. Here's another way, simply pointing out-- what we'll often be doing is building
tables to show the high and low condition for our different factors and the levels.

We might label those, and then often, we'll illustrate our design space or experimental space with a design matrix
or a design plot. So here I'm showing simply-- the four different conditions for velocity and hold time either, low
or high. and I'm also doing something a little bit subtle, which is labeling them with not just a plus or a minus, but
in fact, giving them a normalized value of plus 1 or minus 1.

There's some subtle reasons for doing that. One is, by definition, when I now fit for a two-level experiment-- when
I fit a model coefficient to that, it will always be 0 mean, and so now that beta 0 term really does turn into the
mean estimate. But-- might see that a little bit later.

But the point is here now this is basically expressing all four of my conditions, my test conditions from the
previous design. And I can also plot that, each one of these test conditions, on the x1 axis. We said this is
velocity, basically. And this is my x2 axis, which is hold time. So it's either at the plus 1 or the minus 1 level for
that factor.

And so I've got an experimental design, where I've got four sample points at the plus minus every combination of
those particular factors. And so we'll often talk about this as a corner point DOE or a full factorial DOE, where I've
got every combination of those discrete factor levels being mapped out.

And then I go and I run my tests. And here I've just written down the results of the average of the output over all
replicates for that point. So this was over the 14 or 15 replicates. Notice here, this is just mapping out the design
space, my x1 versus x2. It's not really showing you on a third axis what the output is.

We could also do that and have a 3D plot, and we'll see that in a second. But the point for doing this formulation,
this full effects model with these effects offsets and just reminding us what the model exploration here is, is that
what we would also like to do, even when I've got more than one factor-- I've got these x1 and x2 factors-- is ask
the ANOVA question, which would be-- from an ANOVA point of view, I would like to ask, does velocity have an
effect?

If I change from the low to the high, do I get an appreciable and significant change in the output? So from an
ANOVA point of view, if I'm just looking at velocity, I would like to ask a question-- just looking together across all
of the data that I've got at the low condition for x1 and all of the data from the condition at x2, I might ask that
question and say, is there a shift from that perspective or not?

So really, we're back to a hypothesis test-- oh, what happened there? This should be a dot, dot, dot. [INAUDIBLE]-
- which is basically asking the question, in the null hypothesis, there is no effect-- all of my taus are equal and 0,
and all my interactions are 0. And in the alternative hypothesis, something has an effect. So that's the key
question.



Now, what you can do is start formulating, exactly like we did with ANOVA, sums of squared deviations across,
for example, all of the A levels averaged over the B factors and any replicates. Remember, this is replicates. This
is the B factor. So for example, this sum right here would be-- let's see-- forgot which one-- I'm looking at the
responses for the first level, so call it the A level.

So that would be basically the big red thing that I had drawn here. I basically call this first one factor A, and what
I'm simply doing is averaging over all of the n replicates at each of these points and over the B levels at that
point. So I can form a sum of squared set of deviations from the mean as I change factor A. I can similarly do that
as I change factor B.

Then I can also look at these interaction sum of squared terms, and once I have these, I can now start to break
down the total sum of squared deviations in my data into components due to factor A, sum of squares from--
deviations from the grand mean for factor B, and terms here from interactions. And then this is residuals, sum of
squared error.

So basically, it's just like we did with the single factor ANOVA, but now I can do that, well, looking and seeing, did
factor A have an effect? What's the sum of squared deviations that I observed in my data from the mean as I
change that factor-- and similarly, for factor B. And I could extend this on to more factors, if I wanted-- if I had
three factors or four.

This is also just reminding us or laying out that there are different degrees of freedom in each case, which we're
going to need when we want to estimate the mean square, because what we'll do is we'll take the sum of squared
deviations, divide it by its degrees of freedom-- which is the number of factor levels I had minus 1 in each of
those cases-- and put these together to get a mean square estimate for that factor, which is essentially an
estimate of the variance due to changing factor A, just like in the ANOVA formulation.

And you can plot that into an ANOVA table for multiple factors, where, again, we have the sum of squared
deviations due to each of those factors. This is just plugging in those formulas that we saw earlier. And the
interaction-- if I've got pure replicates, that's a great case where I can separate out exactly just the replication
error, perhaps coming from measurement or pure process replication error.

And then, with the right appropriate degree of freedom, I can now form the mean square estimates. Remember,
these are variance estimates. And then I can form the right F factor to decide, does this mean square, with
respect to my within group mean square-- is that large enough effect to be statistically significant using an F-
test? So it's exactly the same formulation for the ANOVA, but now where we can break it out across multiple
factors or multiple interactions.

OK. You actually have to try it and use this to get it, but the key point here is, when we are building these
multiple factor models, it's still an ANOVA formalism to decide whether or not that factor is statistically significant
or not. So let's look at this in the case of a linear model. And I'm going to give you a little bit more terminology
here and start to get to this idea of contrasts, which are easy ways of estimating some of these models.

So this is still our injection molding data. Factor x1 here was velocity. This was hold time. And I've got every
combination. What's new on this page that I want to draw your attention to is some additional terminology that
we often use that's shorthand for indicating the different combinations of those factor levels, that tell us exactly
what point, what condition, combination we're running for each of our tests.



So I already showed you this table which was saying, OK, for my first factor-- which we've also labeled as factor
A-- factor x2 is our second factor. So note here, we've got three different kinds of-- ways of referring to the same
factor. The first factor, factor a x1 value-- it's the velocity term. What I can also do is indicate in shorthand which
condition is actually at work.

And so it takes a little bit of getting used to, but what you'll see here is-- let's look at this condition first. What
I've selected here for test number two is the high condition for factor A and the low condition for factor B. So
what we're doing in shorthand is indicating with a lowercase version of that factor level all of the high selections
for that factor.

So the high here meant I picked the high condition for factor A, and I denote that with a little a. And the low
factors we just leave off, or think of those as a 1 setting. So my high condition for factor B-- I'll indicate that test
setup as-- with a little low b. And this interaction, where I vary and pick the high condition for both of those, gives
me the AB combination. And the overall low condition we often refer to as the 1 test condition.

Now, the reason for doing this will maybe not be completely clear, but-- give you some intuition. When we extend
this to larger numbers of factors, where you want a very shorthand way of describing which combination-- which
test condition, which combination of your factor levels you want to do, and as ways of forming sums on the
outputs at those conditions in order to be able to do our estimates. So that's a little bit of additional notation.

Now, the model that we might want to fit is, in fact, perhaps a regression model. It's a little bit different than the
factor effects model, which becomes a very nice way to do it when we've normalized our inputs. This works best
with normalized input levels-- in other words, my x sub i taking on values of plus 1 and minus 1.

And we'll see how those relate to the offset or effects model in a second. So this is now the same plot, my input
x1 and my input x2, but now I'm also adding the output. So I'm getting to my 3D view of the results. This is the
same graph as before-- my factor A and my factor B.

But then the height here-- each of the values is the y bar at my n replicates averaged together to give me a
sense of what my actual process output was at each of my four input conditions. So we can talk about here the
mean values of each of those different treatment conditions, again, where each of those is an output across
those. And now we can start to look and say, OK, are there trends as a function of factor A, are there trends as a
function of factor B, and fit model coefficients that go or capture with those trends?

So a couple more pieces of terminology-- we can be asking, is there an effect in the ANOVA sense-- and we don't
want to estimate what the effective is from a model coefficient effect-- is there an affect or a main effect-- which
is the direct linear term-- and are there these interaction effects, or these AB interaction or multiple factor
interactions?

And the perspective that we take is very close now to that sneaky trick that I showed-- described with the
injection molding data. If I'm trying to estimate the main effective my first factor, I basically am treating my
second factor as just noise conditions. And I form my aggregate perspective for, is there a velocity effect,
averaging together all of the other data, just considering holding the velocity at its low condition or the velocity
at its high condition.



And then I basically do a linear fit through the mean of those two cases. So it's just like we were doing that the
linear case, but ignoring or lumping together all of the other data to estimate the main effect in each case. So
there's a way to look at this then in our data here for estimating the main effect.

We would label the main effect for A as basically looking and saying, what I'd like to do is take both of my high
settings for A-- this is the plus setting for A-- average the outputs together for those two cases-- similarly, take
the low condition for A-- let me use a slightly different color here, make this blue-- look at the low condition, and
average those together, and then look at in aggregate as I went from the low to the high for condition A.

Is there an average jump up? Is there an effect of factor A in aggregate? And so what you can actually do is very
simply form-- or model that overall delta coming from factor A as just the overall average between these two
points and the overall average between these two points, and simply fit the line through the mean of those two
cases.

So essentially, I project all of my data just down onto my A axis and ask the univariate question, does my y
output change as a function of A-- lumping together all of the other data? And so that's simply what we're doing
with this equation. And now that terminology that I introduced in the earlier picture comes into play. You can talk
about now the outputs at y sub A high as being those cases where I had the plus value for A and the low value
for B.

And the other one would be the plus value for A and the high condition for B. So these two points I'm simply
referring to-- it's getting kind of messy here, isn't it? I can refer to this average right here as the A and AB
outputs averaged. I've got two of those levels, and then n replicates at each of those points. So that's just a way
of expressing that average, using our test condition terminology.

OK. Everybody get mean effects? We can also do interaction effects. And they're a little bit more subtle to form
the contrast, but it's essentially asking a different set of averages, and trying to say, as I change both A and B
together, do I get something more than the A effect alone or the B effect alone? And what we actually do in this
case is take the AB condition-- this one right here-- take the low-- so I'm taking the high-high and the low-low,
forming its average.

Then I take the other corner, the just A high and the just B high-- take its average, and then basically take the
difference between those two. So I'm averaging the corners together, in contrast to the main effect, where I just
averaged along the two factor levels. And that forms an estimate of the AB offset.

Basically, this average of the A high and the A low we'll refer to as the contrast, the right combination of the
output values that give me an estimate for the A effect. And similarly, we'll talk about the contrast here for the B
factor. Which combinations of output values do you use to estimate that effect and the contrast for the
interaction terms?

And what's cool, if I go back to that early slide where I said, if I'm just fitting a linear output, y as a function of
one factor, and I got two data points, my line goes through the average of those two conditions. If I form the
contrast now in a multiple output case, again, the best estimate of the linear line goes through the averages--
these are the averages at each of those conditions.



And what I've simply got is, directly from the contrast, a direct estimate of the model coefficient as a function in
the normalized axis space. If our x sub i's are in this normalized plus 1 to minus 1 range, directly calculating the
contrast of my outputs gives me directly what an estimate of the effects are-- the main effects as well as the
interaction effects.

So I didn't actually have to go and do the optimization problem, do the linear regression. I'm using the fact that
the linear regression forces the data to go through the averages. And I can simply look at the data conditions
that I've got, the averages of the output at each of my four combinations, and then look at it either from the A
factor perspective and estimate the A affect, with a B factor perspective and estimate the B effect, and then also
look and see if there's an interaction between the two because of cross-coupling between those two factors.

So what you've got is the regression perspective and this contrast perspective are exactly the same. Now, I said
this was a linear model, and what's cool is it actually is from either the A perspective-- I guess that's the B factor.
That's the slope, if you will, versus my B factor, my x2 variable. I could similarly have the slope from my A factor.
This was my A axes, or x1 axes.

So I've got a simple linear dependence of output on the input in each of those two cases, and the interaction
basically gives me linear dependencies that add additional offsets, but that are locally linear in each case. So
what we get is this so-called 3D ruled surface that is linear every time I project it on either the A axis or the B
axis.

But it's got this kind of funky ability to shift because of the interaction, so it's kind of a subtle non-linearity at
work. It's not a curvature non-linearity in the sense of quadratic curvature. It is a ruled surface projection down to
linear dependencies on A and B for each of my combinations.

So here's an example of the surface that results if I don't have the interaction. And a very simple model example
is x1 and x2 with some linear coefficient, and then what I've simply got for my ruled surface is a plane. It's a
slanted plane as a function of x and x2 factors. Sometimes we also draw these interaction plots, and all of that
this is just looking at one of the factors-- say, along x2-- and picking some value for the other factor-- say, x1 is--
let's see-- x1 is low-- that would be this line right there-- or x1 is high, which would be this line right there-- and
then simply plotting y just as the univariate function of x2, where I picked or set some other value for my x1.

And in this case without interaction, you'll notice those lines have to be parallel-- that what I've got as a simple
linear additive model without interaction is I just get off sets because of whatever value of x when I pick or
offsets because of whatever value of x2 I pick. So this is simply saying the x1 effect is shown right here as an
additional shift in the output dependence on x2.

So this is just another slice through the 3D picture, but what's important here is you would see this kind of
interaction pattern on your output as a function of your input, if there's no cross term between x1 and x2. And in
contrast, here's the response surface of output as a function of my two inputs. This is, again, a ruled surface.
Each one of these is just a line, but now it's got this funky non-linearity because of this interaction term.

And in this case, if I take a slice at different low and high of x1, you can see that there's something at work more
than just an additive effect from x1, depending on my value of x2. There is synergy between whatever x1 value I
pick and x2 value I picked that together-- I need both to explain the output and how they work together. You can
also have negative interactions, where the cross term causes a negative synergistic effect between the two.



OK, so what we'll pick up on next time is extending this a little bit to a more general way of talking about these
contrasts. I think hopefully now you've got the picture from a univariate kind of modeling and regression picture
up to a two-factor kind of picture with these interactions. Next time, what we'll do is extend that-- oops-- extend
that or generalize that to when I might have three factors-- an A, B, and a C factor, for example.

And how do you visualize your design space in those cases and how do you form the contrast to very quickly
estimate model coefficients in those cases? And then we'll also get to-- oops-- why'd that happen? We'll also get
next time to looking a little bit more at, how do I check the adequacy of these model terms, are they significant,
as well as, what are good estimates for confidence intervals on these things-- and then come to these other
subtle points, like what happens if I don't want to do 2 to the k, when k is 5?

I don't necessarily need every combination. And we'll talk about fractional factorial designs. So one thing you
should do in preparation for next time is start reading the experimental design chapter. And I can't remember
which chapter it is in Montgomery. I'll post that on the-- as an announcement on the website.

But there's a lot of lingo to get used to, but it all comes back to nice intuitive relationships, I think. But you do
need to start at least scanning that chapter in Montgomery for the experimental design stuff. I think Montgomery
has a more thorough description than we can find [INAUDIBLE]. Actually, [INAUDIBLE] might be a good place to
get the quick read on it first, and then Montgomery in more detail.

So with that, I hope you guys have a great spring break. And enjoy the MIT spring break, for our MIT students in
Singapore. You can rub it in to all your classmates who are still meeting for other classes in Singapore. You get a
break to work on your projects out in Singapore. So we'll see you in two weeks.


