

Mouse Fibroblast Cells Labeled With Membrane Fluidity Probe: Laurdan

OUTLINE

I. Molecular dynamics: diffusion, constrained diffusion, anomalous diffusion, directed motion
II. Peeking
A. FRAP/PAF
B. Time-resolved polarization
C. FCS
D. SPT
E. LTM
III. Poking
A. Optical micromanipulation
B. Magnetic micromanipulation
C. Manipulation of single proteins

Molecular Dynamic Processes

Molecular motion governed by only stochastic processes:

$$
\begin{aligned}
& \frac{\partial C(\vec{r}, t)}{\partial t}=D \nabla^{2} C(\vec{r}, t) \\
& \quad<|r|^{2}>\propto D t
\end{aligned}
$$

Molecular motion modified by the underlying structure and machinery

$$
\begin{gathered}
<|r|^{2}>\propto D t^{\alpha} \\
\alpha<1
\end{gathered}
$$

Molecular motion confined by the underlying structure

$<|r|^{2}>\propto D t^{\alpha}$
for small t
$<|r|^{2}><r_{0}^{2}$
For large t

Molecular motion driven by cellular motor proteins as well as stochastic processes

Fluorescence Recovery After Photobleaching (FRAP)

Photoactivation of Fluorescence (PAF)

FRAP

Basic idea:
Get rid of some fluorophores inside a pre-defined volume and watch the fluorescence come back.

How to get rid of the fluorohpores?
Photobleaching-- photochemical destruction of the fluorophore:
fluorescein : $10^{\wedge} 3$
rhodamine: $10^{\wedge} 6$

PAF:

Basic idea:
Reverse FRAP.
Create active fluorophores inside a well confined area and watch them diffuse out.

How to "make" new fluorophores?
Use caged fluorescent molecule -molecule that has a "caging" group that quenches the fluorophore until the cage group is removed by photochemical process.

Typical instrument arrangement for FRAP/PAF experiment

Brown et. al., 2000

Typical PAF and FRAP data

McGrath et al., 1998

Quantitative FRAP Data

Brown et. al., 2000

Fluorescence Polarizaton Decay

Basic idea: Fluorophores absorb and emit light only along certain orientation relative to the excitation light. Watch them tumble.

FRAP and PAF probes translational diffusion of molecules.

$$
D \propto \frac{1}{r}
$$

While translational diffusion is important, one should not neglect the presence of roational diffuison processes.

$$
D \propto \frac{1}{V}
$$

Basic Fluorescence Spectroscopy

Important parameters:
(1) wavelength
(2) lifetime
(3) polarization

Jablonski diagram

Fluorescence Polarization

Electromagnetic wave:

All fluorescence molecules have definite absorption and emission dipoles.

$$
P \propto \cos ^{2} \theta
$$

Rotation Measurement based on Polarization

$$
P \propto \cos ^{2} \theta
$$

$$
P(t)=\frac{I(t)_{p a r}-I(t)_{p e r}}{I(t)_{p a r}+I(t)_{p e r}}
$$

Rotational diffusion rate of molecules can be measured based on the time-resolved polarization

Typical rotational correlation time: 10-100 ps Typical fluorescence lifetime 1-5 ns

The time-averaged polarization is zero.
Polarization need to be measured with ps time resolution.

Typical time resolved polarization images

Buehler et al., 2000

Fluorescence Correlation Spectroscopy

Basic idea: Look at "noise".
If you look into a small enough volume, molecule will move in and out of it. If these molecules are tagged with a fluorophore, the detected signal with blink on and off. The temporal statistics of the blinking gives information of the molecular diffusion.

Temporal "correlation" provides the mean transition time of the molecule across a small excitation region.

I

What else can we find out by looking at noise?

| $\Delta I / I$

Quantification of fluctuation spectroscopy

Intensity fluctuation is typically analyzed using the autocorrelation function:

$$
g(\tau)=\frac{<I(t) I(t+\tau)>-<I(t)>^{2}}{<I(t)^{2}>}
$$

What does it mean? It is a measure of this: if you are measuring a high intensity at a given moment, what is the chance that you will still measure a high intensity some time τ away.

।

Instrumentation for FCS

Monitoring Diffusion of GFP-lipid in Cells

Schwille et al, 2000

Single Particle Tracking

Basic idea: Ensemble average does not tell the whole story. Watch the diffusion/transport of single molecular motion in cells. Very useful for discern non-stochastic modes

Smith et al, 1999

Typical tracking data of diffusion particles under thermal current

Short Term Tracking

The details in the trajectory allows us to separate out diffusive from driven motion.

Long Term Tracking

Macrophage capture of BSA coated particles

Laser Tracking Microrheology

Basic idea:

Extending SPT to a much faster time scale. Instead of imaging the motion of particles over a whole image ,
LTM focus on a single particle tracks it with excellent spatial and time resolution.

Typical Tracking data of LTM

Yamada et al., 2000

Tracking granules in kidney epithelial cells

Yamada et al., 2000

Rheology data gained from tracking data of intracellular granules

Equipartition theorem:
$\frac{1}{2} k<x^{2}>=\frac{k T}{2}$
Yamada et al., 2000

Magnetic Versus Optical Manipulation

Magnetic: constant force

Optical: constant position

Magnetic

Uniform force across sample
Force set by magnet current
Large force range: $0.01-500 \mathrm{pN}$

Rotational fields generate torque
Simultaneous parallel manipulation

Optical

Force level depends on location within trap
Requires particle location measurement to determine force
Force range limited by
Low: Brownian fluctuations for force determination
High: Sample damage by high laser intensities
Difficult to implement rotational manipulation
More difficult for multiple manipulation

Basic Principle of Laser Tweezers

Momentum Transfer

Some exercises with optical tweezers

A single bead

DNA linked beads

Magnetic Trap

The geometry of the magnetic trap is shown at the left. The sample is placed in the center.

The force is generated by a combination of the field strength and field gradient. It is possible to obtain 250 pN of force per bead.

Force Generation By The Magnetic Manipulator

$$
\begin{aligned}
\vec{F} & =(\stackrel{\rightharpoonup}{m} \bullet \nabla) \stackrel{\rightharpoonup}{B} \\
\vec{m} & =\chi V \vec{B} \\
& =\text { induced bead magnetic moment }
\end{aligned}
$$

Microscope Schematic

Perspective View of 8 Pole Magnetic Manipulator

Magnetic manipulation of DNA-EXO Complex

Wilder Manipulation of DNA-EXO Complex

CELLULAR RESPONSE TO MAGNETIC FORCE

3-D Distribution of GFP-actin

Same cell, top three with no force, bottom three with a 200 pN force in the arrows' direction. Slices are $250 \mu \mathrm{~m}$ apart. The lowest slice is on the left.

Force Applied, 2-D section

Magnetic bead

Before a force is applied. All beads are polystyrene except as indicated

After a 200 pN force is applied in the direction of the arrow.

Non-Local Cytoskeletal Deformation From Localized Strain

GFP-Actin transfected human arotic smooth muscle cells. Super-paramagnetic particles are attached to cytoskeleton via fibronectin-integrin linkage. 100 pN per bead is applied using a magnetic micromanipulator.

INDUCED MOTION

(top: control, bottom: cell)

Figure from Kovall \& Matthews, Science

λ Nuclease Active site

Figures from Kovall \& Matthews PNAS 95, 7893 (1998)

Vexonuclease

Wong, Science,282,902, 1998

λ-Exonuclease Velocity Distribution

