

Compressive elements

Typical Eukaryotic Cell

1 μm = 10⁻ ⁶	m
1 nm = 10 ⁻⁹	m
$1 \text{ Å} = 10^{-10}$	m

Plasma Membrane

Plasma Membrane

Cytoskeleton

Cytoskeletal fibers

	"rigidity"	
	Diameter (nm)	Persistence Length (µm)
actin	6-8	15
microtubule	10	60,000
intermediate filament	20-25	1-3

When stressed, cells form stress fibers, mediated by a variety of **actin-binding proteins**.

TEM of cytoskeleton, Hartwick, http://expmed.bwh .harvard.edu

Actin filament: a force of 10 pN supported by a single actin filament ($E \sim 10^9$ Pa) produces a strain of $\sim 2x10^{-4}!!$)

Structure of actin, http://www.scripps.edu/mb/wrigge rs/projects/actin/

Measuring Complex Material Properties

Cell Adhesion

Molecular properties in cell adhesion: a physical and engineering perspective

TRENDS in Biotechnology Vol.19 No.8 August 2001

Chase E. Orsello, Douglas A. Lauffenburger and Daniel A. Hammer

310

Physical forces effect bond association/dissociation

Finite contact times

Cell deformation