
Anonymous MIT student 2009-12-04 

Prof. Chirstopher Ariza 21M.380 

Sonic System Project


Approximating Acoustics with Convolution


The purpose of this project is to design and implement a software Sonic System that 

could effectively model the acoustics of a room. This is carried out by using several special 

properties of sound and acoustic systems, which facilitate the intense computation associated 

with such tasks. The project was implemented in Java and uses the Java Sound back-end in order 

to access audio streams such as speakers, microphones, and software mixers. 

The motivations behind this project were numerous. The major aesthetic motivator was 

the experimental piece “I'm Sitting in a Room,” by Alvin Lucier. This piece was generated as 

follows: Lucier spoke into a microphone and recorded his voice. He then positioned the 

microphone in a certain way and recorded the playback of his voice, which also captured his 

acoustics. Over time, these acoustics would cause several aspects of his voice to fade and would 

amplify others. Eventually, the recording converges to a smooth, rich tone, which I find very 

aesthetically appealing. Since then, I have been thinking of ways to simulate that process 

computationally, which could incredibly speed up the process by which Lucier arrived at his new 

sound. 

The principles by which this is carried out through software are all founded on the 

breathtaking linearity of sound systems such as rooms. Because sound travels at a near-constant 

velocity, independent of frequency, to good approximation, any acoustic system without much 



noise can be approximated as a Linear, Time-Invariant System (LTI). 

A remarkable property of these systems is that in emitting a unit sample (a sample whose 

amplitude-time product is 1) and observing the response to such an input, one can extend these 

observations and predict a system's outputs given other inputs. The method by which this is 

calculated is called convolution, which is defined as follows: the sum from negative infinity to 

infinity, of one function sampled at the iterative index, times another function at the absolute 

index minus the iterative index. 

The fact that one can simulate the acoustics of a room and why convolution holds is due 

to a property of linear systems called superposition. Superposition can be defined as follows: 

Given one input and its response, and another input and its response, the response to both these 

inputs must be the same as the simple addition of the single, observed responses. Similarly, given 

an input and its response, the response to that scaled input must be the observed response scaled 

by that same factor. Thus, any discrete signal can be modeled as a superposition of unit pulses. 

The framework that was chosen for this project is Java. Java is an object-oriented 

programming language that lends itself well to dealing with quantized, discrete entities. Aside 

from its robust object-orientation, Java was chosen for its minimalist, visual Sampled Sound 

framework. The framework operates as follows: Each “entity” that deals with sound implements 

the interface Line. Each Line represents a flow of data, either out or into the computer. There are 

mixer objects that serve as encapsulators and proprietors of these Lines. These mixer objects can 

be obtained from the AudioSystem object and are direct interfaces to the different mixers present 

on a machine. Due to the high level of abstraction, the framework simplifies the task of choosing 

a mixer; all that is required is to specify the characteristics of the Mixer or the Lines. All of these 

classes are encapsulated by the AudioSystem object, which serves as a hub from which Lines and 



Mixers may be accessed. All of the remaining classes are simply instantiations of the mentioned 

superclasses and are a bit more specialized: some Lines are dedicated to sound capturing and 

others to sound playback. 

When one accesses a Line, if it is available, one “opens” the line and starts streaming data 

to or from the program. The Java Sound framework only supports Pulse-Code Modulation 

encoding schemes, which are schemes that encode the wave as a succession of samples, each of 

which contains an amplitude of the sound wave. The stream is composed of an array of bytes 

which is renewed in intervals as the sound object is processed. 

The convolver is implemented as follows: The Convolver class handles user interaction. 

Filenames and parameters are passed through the terminal and are interpreted by the program. 

Computation is handled by the ConvolverMixer, which encompasses two input 

InputAudioStreams, one for the unit impulse reponse, and another for the raw audio input, and 

one output stream. The ConvolverMixer handles multiple channels gracefully, but places one 

major restriction on the input streams: both input lines must share the same sampling frequency, 

bit depth, and number of channels. The program is built hierarchically, dividing major tasks into 

simpler subtasks. The convolved samples are output to the specified File that was included in the 

Object declaration. The output data file has the same properties of the input streams. 

The output of the system merely convolves the audio (at this time). The files that I have 

used so far are freely available on the Internet. The output sounds convincing but could be 

tweaked to take into account differences in maximum amplitudes, among other factors. A way in 

which the program could be improved substantially would be by enabling the recording of voice 

in order for that stream to be convolved. Another way in which this Sonic System could be 

improved would be by creating a method through which a unit impulse could be generated and 



another through which a room's impulse response could be captured. This project has a lot of 

potential for experimentation with convolution and reverberation. Eventually, I hope to be able to 

iteratively convolute a sound input and to arrive at a sound similar to Lucier's. 

References: 

–	 “Overview of the sampled package”. Obtained at: http://java.sun.com/docs/


books/tutorial/sound/sampled-overview.html


–	 6.02 Lecture Notes. Obtained at: http://web.mit.edu/6.02/www/ 

–	 currentsemester/handouts.html#lectures 

–	 French, A. P. (1971). “Vibrations & Waves: The M.I.T. Introductory Physics Series”. 

Published by W. W. Norton and Company in New York/London. 

Note: 

The code for this project can be accessed online at http://18.244.6.67/Public/21M.380/ssp/ 

This code is a work in progress. The final iteration will most likely have more features. 

http://java.sun.com/docs/
http://web.mit.edu/6.02/www/
http://18.244.6.67/Public/21M.380/ssp/


MIT OpenCourseWare
http://ocw.mit.edu 

21M.380 Music and Technology (Contemporary History and Aesthetics) 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



