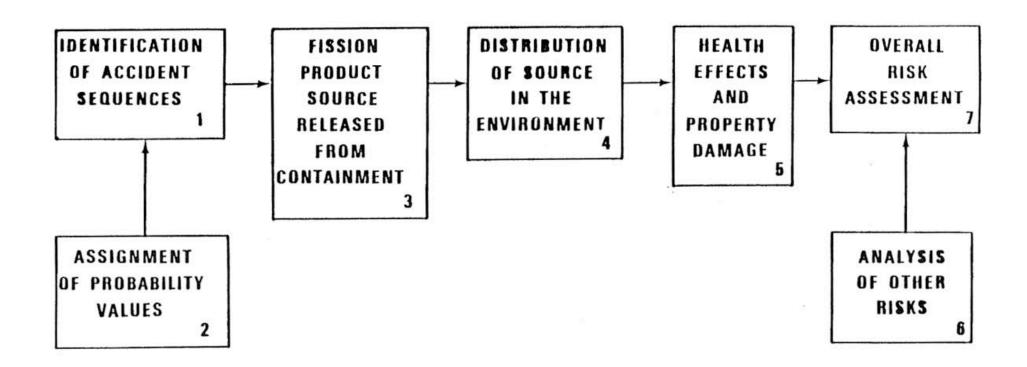
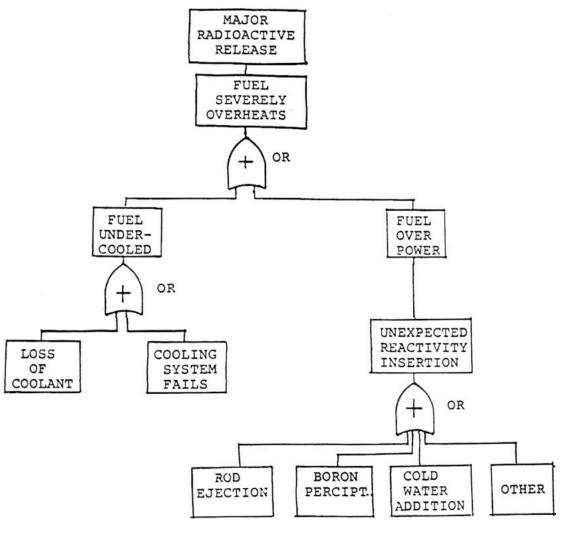
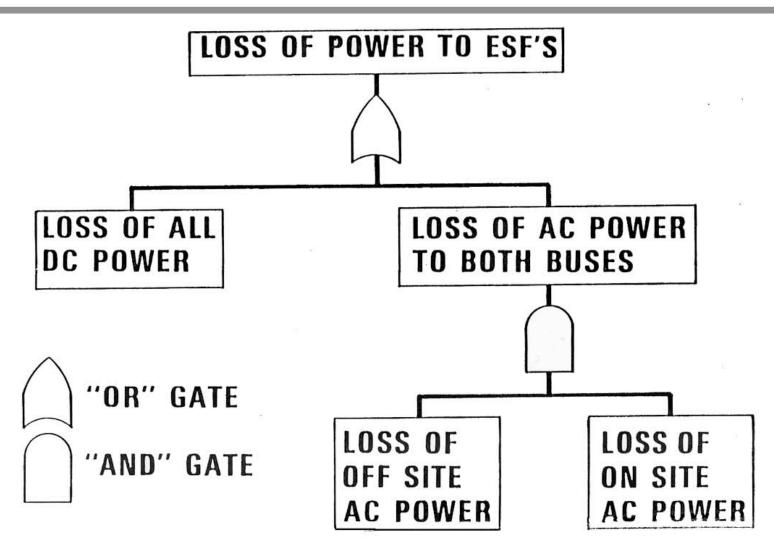
PROBABILISTIC RISK ASSESSMENT (PRA) STRUCTURE AND RESULTS

Prof. Michael W. Golay Nuclear Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139


FUNCTIONS OF ENGINEERED


Courtesy of U.S. NRC.

1


BASIC SEVEN TASKS IN REACTOR \Box SAFETY STUDY \Box

EXAMPLE MASTER LOGIC DIAGRAM

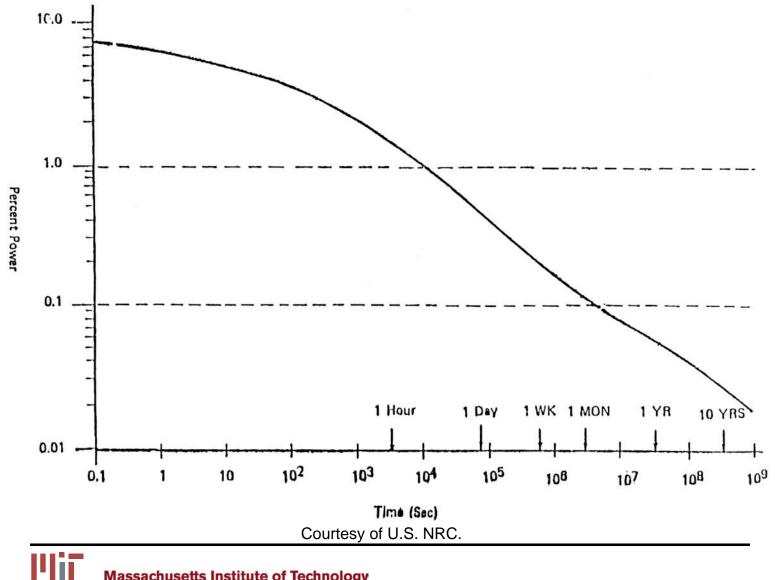
SIMPLE FAULT TREE ON ELECTRIC POWERS

INITIATING EVENTS FROM

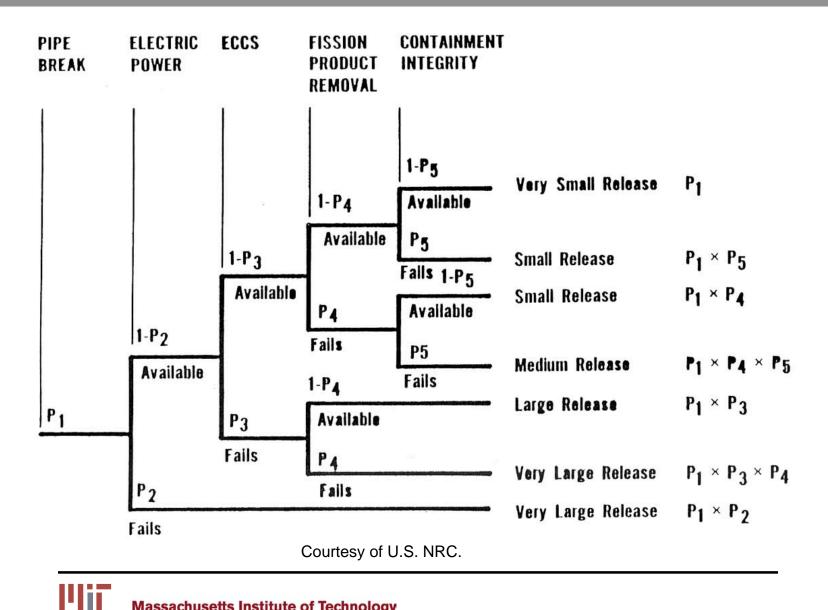
Loss of Coolant

- 1. Small Pipe Break
- 2. Medium Pipe Break
- 3. Large Pipe Break
- 4. Interfacing LOCA "V Sequence"□
- 5. Vessel Rupture

Failure of Cooling System


• Transients 🗆

Power Excursions*


- Control Rod Ejection
- Cold Water Addition

* This class of initiator found to have a negligible contribution to risk in WASH-1400

HEAT PRODUCTION BY DECAY OF FISSION PRODUCTS

SIMPLIFIED EVENT TREE FOR A LOCA **IN A TYPICAL NUCLEAR POWER PLANT**

INITIAL ACTIVITY OF RADIONUCLIDES IN THE NUCLEAR REACTOR CORE AT THE TIME OF THE HYPOTHETICAL ACCIDENT

		Radioactive Inventory			
.¥o.	Radionuclide	Source (curies x 10 ⁻⁸)	Half-Life (days)		
1	Cobalt-58	0.0078	71.0		
2	Cobalt-60	0.0029	1,920		
3	Krypton-85	0.0056	3,950		
4	Krypton-85m	0.24	0.183		
5	Krypton-87	0.47	0.0528		
6	Krypton-88	0.68	0.117		
7	Rubidium-86	0.00026	18.7		
8	Strontium-89	0.94	52.1		
9	Strontium-90	0.037	11,030		
10	Strontium-91	1.1	0.403		
11	Yttrium-90	0.039	2.67		
12	Yttrium-91	1.2	59.0		
13	Zirconium-95	1.5	65.2		
14	Zirconium-97	1.5	0.71		
15	Niobium-95	1.5	35.0		
16	Molybdenum-99	1.6	2.8		
17	Technetium-99m	1.4	0.25		
18	Ruthenium-103	1.1	39.5		
19	Ruthenium-105	0.72	0.185		
20	Ruthenium-106	0.25	366		
21	Rhodium-105	0.49	1.50		
22	Tellurium-127	0.059	0.391		
23	Tellurium-127m	0.011	109		
24	Tellurium-129	0.31	0.048		
25	Tellurium-129m	0.053	0.340		
26	Tellurium-131m	0.13	1.25		
27	Tellurium-132	1.2	3.25		
28	Antimony-127	0.061	3.88		
29	Antimony-129	0.33	0.179		

Courtesy of U.S. NRC.

Continued

INITIAL ACTIVITY OF RADIONUCLIDES IN THE NUCLEAR REACTOR CORE AT THE TIME OF THE HYPOTHETICAL ACCIDENT, cont'

	Radioactive Inventory								
жо.	Radionuclide	Source (curies x 10 ⁻⁸)	Half-Life (days)						
30	Iodine-131	0.85	8.05						
31	Iodine-132	1.2	0.0958						
32	Iodine-133	1.7	0.875						
33	Iodine-134	1.9	0.0366						
34	Iodine-135	1.5	0.280						
35	Xenon-133	1.7	5-28						
36	Xenon-135	0.34	0.384						
37	Cesium-134	0.075	750						
38	Cesium-136	0.030	13.0						
39	Cesium-137	0.047	11,000						
40	Barium-140	1.6	12.8						
41	Lanthanum-140	1.6	1.67						
42	Cerium-141	1.5	32.3						
43	Carium-143	1.3	1.38						
44	Carium-144	0.85	284						
45	Praseodymium-143	1.3	13.7						
46	Neodymium-147	0.60	11.1						
47	Neptunium-239	16.4	2.35						
48	Plutonium-238	0.00057	32,500						
49	Plutonium-239	0.00021	8.9 x 10 ⁶						
50	Plutonium-240	0.00021	2.4×10^6						
51	Plutonium-241	0.034	5,350 .						
52	Americium-241	0.000017	1.5×10^{5}						
53	Curium-242	0.0050	163						
54	Curius-244	0.00023	6,630						

SUMMARY OF ACCIDENT SEQUENCES WITH SIGNIFICANT RISK AND CORE MELT FREQUENCY CONTRIBUTIONS

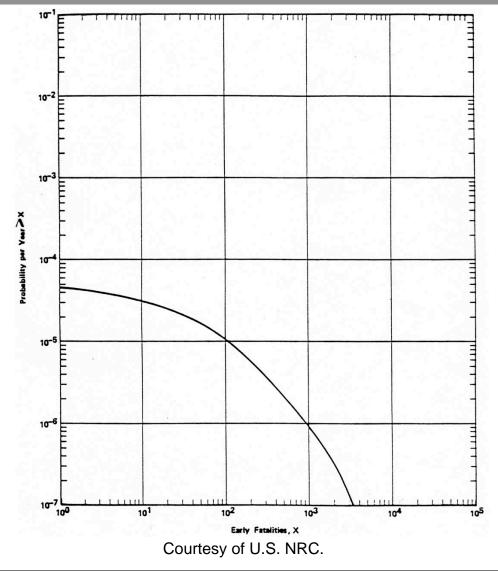
				Sheet 1 of Sequence Ranking			
Initiating Evunt	Additional System Failures/ Human Actions	Resulting Dependent Failures	Sequence Frequency (per reactor year)	Core Helt	Latent Health Risk	Early Healt Risk	
Loss of Offsite Power	Onsite AC Power, No Recovery of AC Power Defore Core Damage	Component cooling, high prossure makeup (ECCS), reactor coolant pump seal LOCA, containment filtration and heat removal.	3.3-5	1	1	•	
Loss of Offsite Power	Service Water, Ho Recovery of Offsite Power	Onsite AC power, component cooling, high and low pressure makeup (ECCS), reactor coolant pump seal LOCA, containment filtration and heat removal.	2	2	•		
Small LOCA	Residual Heat Removal	Nona.	0.9-6	3	•	•	
Contrul Room Fire	None	Component cooling, high and low pressure makeup (ECCS), reactor coolant pump seal LOCA, containment filtration and heat removal.	8.7-6	4	3	•	
Loss of Haln Feudwater	Solid State Protection System	Reactor trip, emergency feedwater, high and low pressure makeup (ECCS), contain- ment filtration and heat removal.	8.3-6	5	4	•	
Steam Line Break Inside Containment Heat Removal	Operator Failure to Establish Long Term		5,6-6	6	·	•	
Reactor trip	Component Cooling	lligh and low pressure makeup (ECCS), reactor coolant pump soal LOCA, contain- mont filtration and heat removal.	4.6-5	7	5	•	
Loss of Offsite Power	Tráin A Onsite Powor, Train D Service Water, No Recovery of AC Power Before Core Damage	Train D onsite power, component cooling, high and low pressure makeup (ECCS), reactor coolant pump seal LOCA, contain- ment filtration and heat removal.	4.4-6	8	6	•	
Loss of Offsite Power	Train B Onsite Power, Train A Service Water, No Recovery of AC Power Before Core Damage	Train A onsite power, component cooling, high and low pressure makeup (ECCS), reactor coolant pump seal LOCA, contain- ment filtration and heat removal.	1.4-6	9	7	•	
PCC Ares Fire	llone	Component cooling, high and low pressure makeup (ECCS), reactor coolant pump seal LOCA, containment filtration, and heat removal.	4.1-6	10	8	•	

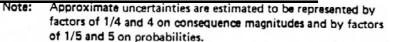
"Negligible contribution to risk.

NOTE: Exconential notation is indicated in abbreviated form; i.e., $3.3-5 = 3.3 \times 10^{-5}$.

SUMMARY OF ACCIDENTS INVOLVING CORE

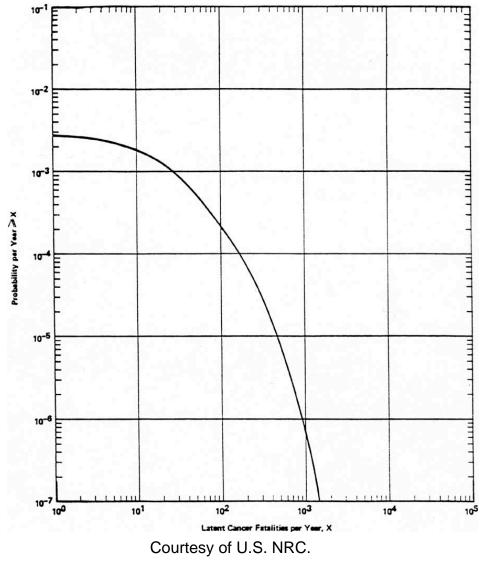
	PROBABILITY	TIME OF		N WARNING TIME FOR EVACUATION (Hr)	ELEVATION OF RELEASE (Meters)	CONTAINMENT ENERGY RELEASE (10 ⁶ Btu/Hr)	FRACTION OF CORE INVENTORY RELEASED (a)							
CATEGORY	ELEASE per	RELEASE					Xa-Kr	Org. I	I	Cs-Rb	Te-Sb	Ba-Sr	Ru (b)	La ^(c)
PWR 1	9x10 ⁻⁷	2.5	0.5	1.0	25	520 (d)	0.9	6x10 ⁻³	0.7	0.4	0.4	0.05	0.4	3×10-3
PWR 2	8x10 ⁻⁶	2.5	0.5	1.0	0	170	0.9	7×10 ⁻³	0.7	0.5	0.3	0.06		4x10
PWR 3	4x10 ⁻⁶	5.0	1.5	2.0	0	6	0.8	6x10 ⁻³	0.2	0.2	0.3	0.02	0.03	3×10-3
PWR 4	5x10-7	2.0	3.0	2.0	0	1	0.6	2x10 ⁻³	0.09	0.04		5x10-3	3x10 ⁻³	4210
PWR 5	7x10-7	2.0	4.0	1.0	0	0.3	0.3	2x10 ⁻³	0.03	9x10 ⁻³	5x10 ⁻³	1x10 ⁻³	6x10-4	
PWR 6	6x10 ⁻⁶	12.0	10.0	1.0	0	N/A	0.3		8x10-4	8x10-4	1x10 ⁻³	9x10 ⁻⁵	7x10 ⁻⁵	1x10-5
PWR 7	4x10 ⁻⁵	10.0	10.0	1.0	0	N/A	6x10 ⁻³	2x10 ⁻⁵	2x10 ⁻⁵		2x10-5	1x10 ⁻⁶	1x10 ⁻⁶	2x10
PWR 8	4x10 ⁻⁵	0.5	0.5	N/X	0	N/A		5x10-6	1x10 ⁻⁴	5x10-4	1x10-6	1x10 ⁻⁸	٥	;
PWR 9	4x10-4	0.5	0.5	N/A	o	N/R	3×10 ⁻⁶	7x10-9	1x10 ⁻⁷	6x10 ⁻⁷	1x10 ⁻⁹	1x10 ⁻¹¹	0)
BWR 1	1x10 ⁻⁶	2.0	2.0	1.5	25	130	1.0	7x10-3	0.40	0.40	0.70	0.05	0.5	5x10
BWR 2	6x10 ⁻⁶	30.0	3.0	2.0	٥	30	1.0	7x10-3	0.90	0.50	0.30	0.10	0.03	4x 107
BWR 3	2x10-5	30.0	3.0	2.0	25	20	1.0	7x10 ⁻³	0.10	0.10	0.30	0.01	0.02	3x 10
SWR 4	2x10 ⁻⁶	5.0	2.0	2.0	25	N/A	0.6	7x10-4	8x10 ⁻⁴	5x10-3	4x10 ⁻³	6x10 ⁻⁴	6x10-4	1x.0
SWR 5	1x10-4	3.5	5.0	N/A	150	N/A	5x10-4	2x10-9	6x10 ⁻¹¹	4x10 ⁻⁹	8x10-12	8x10 ⁻¹⁴	0)

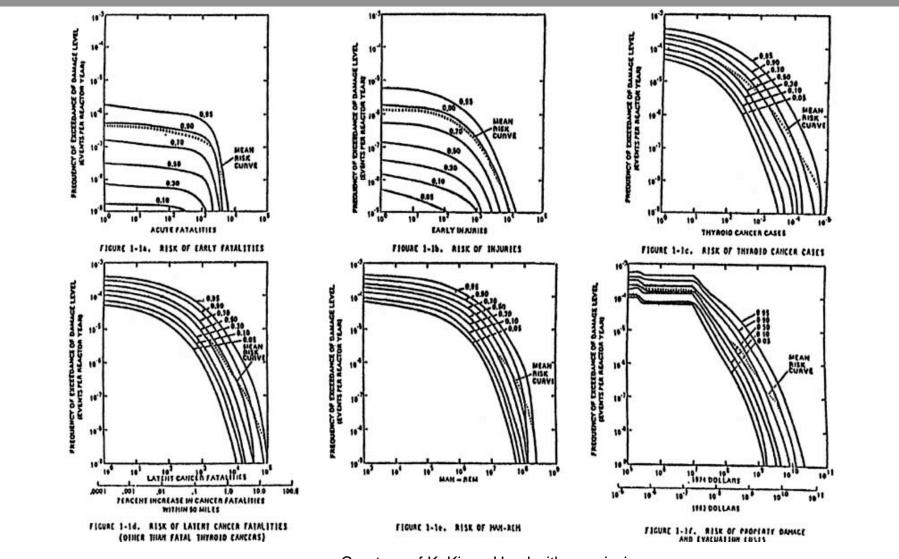

(a) A discussion of the isotopes used in the study is found in Appendix VI. Background on the isotope groups and release mechanisms is found in Appendix VII.


(b) Includes Mo, Rh, Tc, Co.

(c) Includes Nd, Y, Ce, Pr, La, Nb, Am, Cm, Pu, Np, Zr.

(d) A lower energy release rate than this value applies to part of the period over which the radioactivity is being released. The effect of lower energy release rates on consequences is found in Appendix VI.


PROBABILITY DISTRIBUTION FOR EARLY FATALITIES PER YEAR FOR 100 REACTORS


12

PROBABILITY DISTRIBUTION FOR LATENT CANCER FATALITY INCIDENCE PER YEAR FOR 100 REACTORS

Note: Approximate uncertainties are estimated to be represented by factors of 1/6 and 3 on consequence magnitudes and by factors of 1/5 and 5 on probabilities.

RISK RESULTS

Courtesy of K. Kiper. Used with permission.

NUMBER OF FAILURES OF RCP TAKEN FROM NPRDS (1/90 TO 12/95)

Failure Cause	Total Number of Failures				
Design Failure	4				
Procedural Error	2				
Manufacturing Defect	0				
Initial Installation Failure	2				
Operational Human Error	0				
Surveillance/Maintenance Human Error	9				
Operational Failures of Hardware	46				