
24.111 Philosophy of QM Spring, 2005 

Handout #5: The statistical algorithm refined, the uncertainty principle, Schrödinger’s 

Equation, states of multi-particle systems 

I. Projection operators 

First, a word about operators: In general, an operator A on a vector space is just a function 

that takes vectors as input and spits out vectors as output. Almost all the operators we will ever 

care about are linear operators; so let us define them: 

An operator A is linear iff, for all scalars a,b, and vectors φ,ψ, A(aφ + bψ) = aA(φ) + bA(ψ). 

Now we can lead up to a definition of projection operators, which are a particularly useful 

species of linear operator. We will begin with a basic fact about vector spaces (more exactly: 

those equipped with an inner product—hence those for which a notion of “orthogonality” is 

well-defined): given any two vectors Φ and Ψ, there is a unique choice of scalar c and vector Ψ⊥ 

such that 

(i) Φ = cΨ + Ψ⊥, and 

(ii) Ψ⊥ is orthogonal to Ψ. 

In other words, there is a unique way to write Φ as a linear combination of Ψ with a vector 

orthogonal to Ψ. 

Now we can say what a projection operator onto a vector is: The projection operator onto the 

vector Ψ—written “PΨ”—is simply the linear operator obeying the following equation: 

PΨΦ = cΨ, 
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where Φ = cΨ + Ψ⊥, as above. That is, PΨΦ returns the component of Φ that is parallel to the 

vector Ψ. Finally, it is very easy to show that if Ψ’ is parallel to Ψ, then PΨ’ = PΨ. Given this 

fact, it would be a little more accurate—but a little less convenient—to write PΨ as PS, where S 

is understood to be the (one-dimensional) subspace spanned by Ψ. Never mind. 

Now, here is another basic fact about vector spaces (again more exactly: those equipped with 

an inner product): given any vector Φ and subspace S (of whatever dimensionality), there is a 

unique choice of vectors Ψ and Ψ⊥ such that 

(i) Φ = Ψ + Ψ⊥ , 

(ii) Ψ lies in the subspace S, and 

(iii) Ψ⊥ is orthogonal to Ψ. 

In other words, there is a unique way to write Φ as a linear combination of a vector in S with a 

vector orthogonal to S. 

Now we can say what a projection operator onto a subspace is: The projection operator onto 

the subspace S—written “PS”—is simply the linear operator obeying the following equation: 

PSΦ = Ψ, 

where Φ = Ψ + Ψ⊥, as above. That is, PSΦ returns the component of Φ that lies in the subspace 

S. 

All of this is about to be put to use. 

II. An even more efficient statement of the statistical algorithm 

Let’s start with the rendition of the statistical algorithm presented in Handout #4, but stated 

this time more formally. Bowing to convention, we will use the more common expression 

“measurement of an observable” in place of the much less loaded “experiment”: 
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First rendition: If the state of a system is represented by the normalized vector ψ, then the 

probability that a measurement of the observable A (represented by orthonormal basis {φi}, 

where each vector φi is associated with the outcome oi) performed on the system will yield as 

outcome the value α is Σ|aj|2, where the index j ranges over all those values such that oj = α, and 

where ψ = Σaiφi. 

In other words, we start by writing ψ as a linear combination of the elements in the basis 

{φi}. Suppose we have done so; i.e., we have found all the coefficients ai such that 

ψ = Σaiφi. 

Then we collect together all those coefficient aj such that the basis element φj is associated with 

the outcome α that we are interested in. Finally, we square these coefficients, and add the results: 

that gives us the probability that the outcome of the measurement will be α. 

Here is another way to proceed. First, we notice that the basis elements φj that are associated 

with the outcome α collectively pick out a subspace: namely, the subspace consisting of all 

possible linear combinations of them. Let us call this subspace “Sα”. And let Pα be the projection 

operator onto this subspace. Then it is fairly easy to show that 

Pαψ = Σajφj, 

where, again, the index j ranges over all those values such that oj = α. It is also easy to show that 

the length of the vector Pαψ is 

<Pαψ | Pαψ> = <ψ | Pαψ> = Σ|aj|2. 

Putting all this together, we get what will turn out to be a more convenient statement of the 

statistical algorithm: 



4 24.111 Philosophy of QM Handout #4 

Second rendition: If the state of a system is represented by the normalized vector ψ, then the 

probability that a measurement of the observable A (represented by orthonormal basis {φi}, 

where each vector φi is associated with the outcome oi) performed on the system will yield as 

outcome the value α is <ψ | Pαψ>, where Pα is the projection operator onto the subspace Sα 

spanned by all those basis vectors φj such that oj = α. 

Let us finally provide a rendition of the statistical algorithm that makes explicit use of the 

representation of observables by Hermitian operators. First, some definitions: 

Linear operator A is Hermitian iff, for every φ,ψ, <φ | Aψ> = <Aφ | ψ>. 

Vector φ is an eigenvector of operator A iff there is some scalar c such that Aφ = cφ; the 

scalar c is called its eigenvalue. We will say that A admits of a complete set of eigenvectors iff 

there is some orthonormal basis {φi} consisting entirely of eigenvectors of A. 

Suppose that A is a Hermitian operator that has eigenvectors. (Not every Hermitian operator 

does; we’re mostly going to ignore those that don’t.) Suppose, in fact, that the set of its 

eigenvectors is rich enough that any vector can be expressed as a linear combination of 

eigenvectors of A. Then there are several points to note about these eigenvectors. 

The first, rather minor point is that for any non-zero eigenvector φ of A, the associated 

eigenvalue c must be real. That is because  

<φ | Aφ> = <Aφ | φ> since A is Hermitian; therefore 

<φ | cφ> = <cφ | φ> since φ is an eigenvector of A with eigenvalue c; therefore 

c<φ | φ> = c*<φ | φ> by the definition of the inner product; therefore 

c = c* since <φ | φ> ≠ 0. 
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All too often, you see authors making a big deal out of this result, for the following reason: 

Since, at the end of the day, we will be using eigenvalues of Hermitian operators to represent 

measurement outcomes, it is supposed to be a Very Good Thing that those eigenvalues are 

real—since, allegedly, it would be Completely Mysterious how a complex number could 

represent a measurement outcome. This is a piece of utter foolishness. You might pause to figure 

out why. 

Next, suppose that φ and ψ are eigenvectors of A with the same eigenvalue c. Then for any 

scalars a and b, 

A(aφ + bψ) = aA(φ) + bA(ψ) since A is linear; 


 = acφ + bcψ


 = c(aφ + bψ). 


Thus, any linear combination of φ and ψ is an eigenvector of A with eigenvalue c. What this 

means is that the set of eigenvectors of A with eigenvalue c is in fact a subspace. 

Finally, suppose that φ and ψ are eigenvectors of A with different eigenvalues c and d, 

respectively. Then 

<φ | Aψ> = <φ | dψ> = d<φ | ψ>; but also 

<φ | Aψ> = <Aφ | ψ> = <cφ | ψ> = c<φ | ψ>. So 

c<φ | ψ> = d<φ | ψ>. 

But since c ≠ d, this equation can only hold if <φ | ψ> = 0. Thus we conclude that eigenvectors of 

A with different eigenvalues must be orthogonal. 

What all this means is that we can think of A as picking out a set of subspaces, where (i) each 

subspace is associated with a unique eigenvalue of A; (ii) any two subspaces are orthogonal to 
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each other; and (iii) these subspaces span the whole vector space. Making use of this 

observation, we arrive at the 

Third rendition: If the state of a system is represented by the normalized vector ψ, then the 

probability that a measurement of the observable A (represented by Hermitian operator A) 

performed on the system will yield as outcome the value α is <ψ | Pαψ>, where Pα is the 

projection operator onto the subspace of eigenvectors of A with eigenvalue α. 

III.Incompatible observables, and the Uncertainty Principle 

Suppose we have a system in state φ, and we perform a measurement of observable A 

(represented by Hermitian operator A) on it. One quantity we can calculate is the expected value 

of the outcome; we get this by weighting each possible outcome by its probability, and summing 

the results (we are assuming here that A admits of a complete set of eigenvectors).  Let us denote 

this quantity “<A>φ”. It’s a relatively straightforward consequence of the statistical algorithm 

that <A>φ = <φ | Aφ>. 

Suppose that the observed outcome of the measurement is α; then we will say that the 

deviation of the outcome from the expected value is equal to (α - <A>φ)2 (we take the square so 

that the deviation is always a positive number).  We can then calculate the expected value of the 

deviation, sometimes denoted <(∆A)2>φ; this turns out to be equal to <φ | A2φ> - <φ | Aφ>2. 

Intuitively, the quantity <(∆A)2>φ—sometimes called the uncertainty of A (with respect to state 

φ)—measures how widely distributed the outcomes of the measurement of A are likely to be. 
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Heisenberg’s Uncertainty Principle states that for any two observables A and B, and any 

state φ, the product of the uncertainties of A and B (with respect to φ) is greater than or equal to a 

certain non-negative bound, which is a function of A, B, and φ. Precisely: 

1<(∆A)2>φ<(∆B)2>φ ≥ 4  |<φ | (AB - BA)φ>|2. 

If this bound is positive, then, intuitively, the principle says that either a measurement of A 

must have outcomes that are to some extent uncertain, or a measurement of B must. 

Two observables A and B are said to be incompatible iff the Hermitian operators A and B 

which represent them do not commute; i.e., iff AB ≠ BA; otherwise they are said to be 

compatible.  The intuitive punchline of the Uncertainty Principle is, then, this:  If two 

observables are incompatible, then there will be states φ such that—no matter how carefully we 

do our measurements—at least one of a measurement of A and of B must have outcomes that are 

to some extent uncertain. Note well what the Uncertainty Principle does not say: it does not say, 

for example, that it is impossible to simultaneously measure incompatible observables; nor does 

it say that the act of measurement invariably perturbs the system being measured, or that there is 

some irreducible limit to how small we can make such perturbation. It doesn’t even come close 

to saying such things. 

IV. Unitary operators 

So far, we have a mathematical framework that allows us to represent the states of systems at 

a moment; we don’t yet have a picture of how these states change over time.  Developing this 

picture will require introducing a new class of linear operators, called unitary operators. The 

official definition is this:  An operator U is unitary iff it is linear, has an inverse, and for every φ, 
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<Uφ | Uφ> = <φ | φ>. We will work with an unofficial definition—provably equivalent to the 

official one—which we arrive at by considering the rotation operators in R2. 

Recall (from Hughes, section 1.2) that a rotation operator in R2 is a linear operator that 

rotates any vector through a fixed angle, leaving the length of the vector unchanged.  Notice that 

if R is a rotation, and {φ1, φ2} is an orthonormal basis, then {Rφ1, Rφ2} is also an orthonormal 

basis. We generalize this fact to arrive at our unofficial definition:  Given some orthonormal 

basis {φi} for vector space V, an operator U is unitary iff it is linear, and the set of vectors {Uφi} 

is also an orthonormal basis for V. Thus, the unitary operators on V are just the analogues of the 

rotations on R2. 

It follows that U has an inverse. For define the operator U-1 this way: U-1 is linear, and for 

each vector Uφi, U-1(Uφi) = φi. (This definition is legitimate, since {Uφi} is an orthonormal 

basis. Note the in order to exactly specify a linear operator, it is only necessary to specify how it 

operates on each member of some basis; linearity does the rest.)  Then for any ψ, 

U-1(Uψ) = U-1(UΣi<φi | ψ>φi) 

= Σi <φi | ψ>U-1(Uφi) 

= Σi <φi | ψ>φi

 = ψ. 

So U-1 is indeed the inverse of U. 

It also follows that, for any ψ and γ, <ψ | γ> = <Uψ | Uγ>. To see this, note first that it 

follows immediately from the definition of U in the special case where ψ = φj and γ = φk. To 

prove the general case, we notice that 
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<ψ | γ> = <(Σi <φi | ψ>φi) | (Σj <φj | γ>φj)> 

= Σij <ψ | φi><φj | γ><φi | φj> 

= Σi <ψ | φi><φi | γ> 

and that 

<Uψ | Uγ> = <U(Σi <φi | ψ>φi) | U(Σj <φj | γ>φj)> 

= Σij <ψ | φi><φj | γ><Uφi | Uφj> 

= Σi <ψ | φi><φi | γ>. 

Hence in particular, <ψ | ψ> = <Uψ | Uψ>. So if an operator is unitary in our unofficial sense, 

then it is also unitary in the official sense.   

The converse implication also holds. The key step in the proof is to show that, if U is linear, 

has an inverse, and for every φ, <Uφ | Uφ> = <φ | φ> , then for every pair of orthogonal vectors φ 

and ψ, <Uφ | Uψ> = <φ | ψ> = 0. To show this, observe that 

<U(φ + ψ| U(φ + ψ > = <φ + ψ|φ + ψ> = <φ|φ> + <ψ|ψ> 

and that 

<U(φ + ψ| U(φ + ψ > = <Uφ|Uφ> + < Uφ| Uψ> +< Uψ|Uφ> +< Uψ|Uψ> 

 = <φ|φ> + <ψ|ψ> + < Uφ| Uψ> +< Uψ|Uφ>. 

It follows that < Uφ| Uψ> + < Uψ|Uφ> = 0. 

Similarly, 

<U(φ + iψ| U(φ + iψ > = <φ + iψ|φ + iψ> = <φ|φ> + <ψ|ψ> 

and 

<U(φ + iψ| U(φ + iψ > = <Uφ|Uφ> + i< Uφ| Uψ> - i< Uψ|Uφ> +< Uψ|Uψ> 

 = <φ|φ> + <ψ|ψ> + i< Uφ| Uψ> - i< Uψ|Uφ>. 

It follows that < Uφ| Uψ> - < Uψ|Uφ> = 0. 
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Hence, < Uφ| Uψ> = 0. 

So the unofficial definition is in fact equivalent to the official one: unitary operators are 

exactly those linear operators that map orthonormal bases into orthonormal bases. 

One bit of unfinished business, before we move on to a description of the dynamics of states. 

The unofficial definition of unitary operators was made relative to a particular choice of 

orthonormal basis {φi}. In fact, this choice is arbitrary, in the sense that if U maps a particular 

orthonormal basis {φi} into another orthonormal basis {Uφi}, then for any other orthonormal 

basis {ψi}, {Uψi} is also an orthonormal basis.  To see this, note first that {Uψi} is obviously an 

orthonormal set; this follows from the fact that <Uψj | Uψk> = <ψj | ψk>. Now suppose that 

{Uψi} is not a basis. Then there must be some vector γ which is orthogonal to all of the Uψi. 

But then it follows that the vector U-1γ is orthogonal to all of the ψi, which contradicts the fact 

that {ψi} is a basis. 

V. Dynamics of states 

Suppose that A is an Hermitian operator on V that has a complete set of eigenvectors {φi}; in 

fact, let {φi} be an orthonormal basis for V. (There will always be such Hermitian operators, 

when V is a Hilbert space—even if V is infinite-dimensional.  Proving this is left as an exercise 

for the ambitious.)  Then, letting t be an arbitrary real number, we define the operator e-itA this 

way: 

e-itA = Σj=0,∞ (-itA)n/n!. 
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(You may recognize in this sum the usual Taylor-series expansion of ex.) So defined, e-itA is 

linear; further, if φ is an eigenvector of A with eigenvalue a, we have 

e-itA(φ) = Σj=0,∞ (-itA)n/n! (φ) 

= Σj=0,∞ [(-it)n/n!] An(φ)

 = Σj=0,∞ [(-it)n/n!] an(φ) 

= Σj=0,∞ (-ita)n/n! (φ) 

 = e-itaφ. 

Let UA(t) = e-itA. Then, making use of the above result, we can verify that 

UA(0)φ = φ; 

UA(t1 + t2)φ = UA(t1)UA(t2)φ. 

These equations hold for any eigenvector of A. Hence—since A has a complete set of 

eigenvectors—they hold in general. So we in fact have (letting I denote the identity operator) 

(1) UA(0) = I; 

(2) UA(t1 + t2) = UA(t1)UA(t2). 

Notice now that for any t, <UA(t)φ | UA(t)φ> = <e-itaφ | e-itaφ> = eitae-ita<φ | φ> = <φ | φ>. 

This holds for any eigenvector of A; hence in particular it holds for each member of the 

orthonormal basis {φi}. It follows (as you may care to verify) that for any vector ψ, 

<UA(t)ψ | UA(t)ψ> = <ψ | ψ>. Further, (1) and (2) guarantee that UA(t) has an inverse—namely, 

UA(-t). So for each real number t, UA(t) is a unitary operator. 

Now, suppose that S is some physical system whose possible physical states are represented 

on Hilbert space HS. There is a particular Hermitian operator H on HS—called the Hamiltonian 

operator for S—which is typically taken to represent the energy of S. Further, if S is a closed 
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system—which we can take to mean, roughly, “isolated from its surroundings”—then the 

evolution of its physical state is as follows: 

(3) Let ψt be the state of S at time t.  Then the state of S at any time t’ is ψt’ = UH(t’ - t)ψt


(provided S remains closed throughout the relevant time interval). 


Notice the importance of (1) and (2):  Clearly, we must have UH(0)ψt = ψt; (1) guarantees this. 


Further, it must be consistent to hold that ψt2 
= UH(t2 - t1)ψt1 

, ψt1 
= UH(t1 - t0)ψt0 

, and ψt2 
= 


UH(t2 - t0)ψt0 
; (2) guarantees that it is. 

(3) is, in essence, a statement of Schrödinger’s Equation, which is the fundamental equation 

of motion for quantum mechanics.  Notice that the evolution it describes is fully deterministic: 

provided the system S remains closed, its state at any one time determines its state at all other 

times.  If you smell trouble at this point, your nose is in good working order. 

VI. Tensor products 

Suppose a system S consists of n particles.  Then we know that the possible states of S are 

represented by means of some Hilbert space HS, and the possible states of each particle i are 

represented by means of some Hilbert spaces Hi. But questions remain: How is HS related to 

each of the Hi? How are states of S related to states of the individual particles that make it up? 

In particular, is the state of S fixed, once we know the states of the particles?  Conversely, are the 

states of the particles fixed, once we know the state of S? 

We’ll begin with the first question:  The answer is that HS is the tensor product of the Hi. To 

explain what this means, we’ll consider just the case of a two-particle system; the generalization 

to many-particle systems will be obvious.  Note that we are not interested in giving a rigorous 
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definition of “tensor product”; for that you can consult any decent linear algebra text. What 

follows aims at a more user-friendly, working account of the notion. 

We write HS = H1⊗H2; HS is then a vector space with the following features: 

(i) For any φ ∈ H1 and ψ ∈ H2, there is a vector φ⊗ψ ∈ HS; 

(ii) If {φi} is an orthonormal basis for H1 and {ψj} is an orthonormal basis for H2, then the 

set of vectors {φi⊗ψj} is an orthonormal basis for HS; 

(iii) The inner product on HS is specified in terms of the inner products on H1 and H2 by the 

following stipulation: <φ1⊗ψ1 | φ2⊗ψ2> = <φ1 | φ2><ψ1 | ψ2>; 

(iv) If A and B are linear operators on H1 and H2, respectively, then we can define their 

product A⊗B to be that linear operator on HS such that, for any vector φ⊗ψ, (A⊗B)(φ⊗ψ) = 

(Aφ)⊗(Bψ). 

Let’s unpack this a bit. First, observe that if φ1 and φ2 are orthogonal, then regardless of 

whether ψ1 and ψ2 are orthogonal, the vectors φ1⊗ψ1 and φ2⊗ψ2 will be orthogonal, given (iii). 

Likewise, if ψ1 and ψ2 are orthogonal, then regardless of whether φ1 and φ2 are orthogonal, the 

vectors φ1⊗ψ1 and φ2⊗ψ2 will be orthogonal. Finally, if φ and ψ are both normalized (i.e., 

<φ | φ> = 1 = <ψ | ψ>, then of course so is φ⊗ψ. All of which means that part of what is  

stipulated in (ii) is redundant, given (i) and (iii): namely, the set of vectors {φi⊗ψj} is guarantee 

to be an orthonormal set of vectors. What is added by (ii) is the stipulation that this set is a basis 

for the vector space HS. 

Next, it can be helpful to note that in many ways, the operation “⊗” can be treated like 

multiplication. In particular, it’s distributive; i.e., for arbitrary scalars a,b and arbitrary vectors 

γ1,γ2 ∈ H1 and ν1,ν2 ∈ H2, both of the following hold: 
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(1) (aγ1 + bγ2)⊗ν1 = a(γ1⊗ν1) + b(γ2⊗ν1); 

(2) γ1⊗(aν1 + bν2) = a(γ1⊗ν1) + b(γ1⊗ν2). 

It will be a useful little exercise to actually prove that (1) and (2) hold. Here’s how to do so. 

Let {φi⊗ψj} be an orthonormal basis for H1⊗H2. Then we can show that these equalities hold by 

showing that, in each case, the inner products of the two vectors with an arbitrary element of 

{φi⊗ψj} are the same.  For, quite generally, if Φ and Ψ are two vectors in some vector space V, 

then Φ = Ψ iff, for every element Γ of some orthonormal basis for V, <Ψ | Γ> = <Φ | Γ>. 

By the definition of the inner product for H1⊗H2, 

<(aγ1 + bγ2)⊗ν1 | φi⊗ψj> 

= <(aγ1 + bγ2) | φi><ν1 | ψj> 

= {a*<γ1 | φi> + b*<γ2 | φi>}<ν1 | ψj> 

= a*<γ1 | φi><ν1 | ψj> + b*<γ2 | φi><ν1 | ψj> 

= a*<γ1⊗ν1 | φi⊗ψj> + b*<γ2⊗ν2 | φi⊗ψj> 

= <a(γ1⊗ν1) | φi⊗ψj> + <b(γ2⊗ν2) | φi⊗ψj> 

= <a(γ1⊗ν1) + b(γ2⊗ν1) | φi⊗ψj>. 

The proof of (2) is a fairly obvious variation on this proof. 

Next, we should observe that there was something a little fishy about (ii), which said that if 

{φi} is an orthonormal basis for H1 and {ψj} is an orthonormal basis for H2, then the set of 

vectors {φi⊗ψj} is an orthonormal basis for HS. For suppose we had chosen a different 

orthonormal basis {γi} for H1 and {νj} for H2; what guarantees that the resulting set {γi⊗νj} 

would also have constituted an orthonormal basis for HS? Happily, we can now say precisely 

what guarantees this: each vector in {φi⊗ψj} can be written as a linear combination of the 
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vectors in {γi⊗νj}, and likewise each vector in {γi⊗νj} can be written as a linear combination of 

the vectors in {φi⊗ψj}. Suppose, for example, that φ1 = Σaiγi and ψ1 = Σbjνj. Then 

φ1⊗ψ1 = (Σaiγi)⊗(Σbjνj) 

= ΣΣaibjγi⊗νj. 

The last point to emphasize is one that will turn out to be VERY IMPORTANT: Not every 

vector in HS can be written in the form φ⊗ψ, where φ ∈ H1 and ψ ∈ H2. In fact, if γ1 is not 

parallel to γ2, and ν1 is not parallel to ν2, then γ1⊗ν1 + γ2⊗ν2 cannot be written in this simple 

product form (proving this is left as an exercise).  However, (ii) guarantees that every vector in 

HS can at least be written as a linear combination of such vectors. The next section explains why 

this point is so important. 

VII. Limitations of the representation of states by vectors 

The fact that not every vector in H1⊗H2 can be written in the form φ⊗ψ has the noteworthy 

consequence that the following four theses are jointly inconsistent: 

1. For any system S, every possible state of S is represented by some normalized vector in 

the associated Hilbert space HS. 

2. For any system S, every normalized vector in the associated Hilbert space HS represents 

some possible state of S. 

3. Non-parallel vectors cannot represent the same state. 

4. If the state of particle 1 is represented by φ ∈ H1, and the state of particle 2 is represented 

by ψ ∈ H2, then the state of the two-particle system consisting of particles 1 and 2 is represented 

by φ⊗ψ ∈ H1⊗H2. 
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In a moment, we’ll consider which of these four claims ought to be abandoned; but let us 

first see why they are inconsistent. We need only focus on the two-particle system S consisting 

of particles 1 and 2. 

Let φ1,φ2 ∈ H1 be non-parallel, normalized vectors; likewise, let ψ1,ψ2 ∈ H2 be non-parallel, 

normalized vectors.  Choose a scalar c such that cφ1⊗ψ1 + cφ2⊗ψ2 is normalized.  Then claim 2 

tells us that this vector represents a possible state of S.  According to claim 1, every possible 

state of particle 1 is represented by some normalized vector in H1, and similarly for particle 2. 

So consider a possible situation in which the state of S is represented by cφ1⊗ψ1 + cφ2⊗ψ2: let γ 

represent the state of particle 1 in that situation, and ν represent the state of particle 2. By claim 

4, it follows that γ⊗ν represents the state of S, in this situation. We know that γ⊗ν ≠ cφ1⊗ψ1 + 

cφ2⊗ψ2. But so far, we have no inconsistency, since it is in general possible for distinct vectors 

to represent the same state.  However, not only are the vectors γ⊗ν and cφ1⊗ψ1 + cφ2⊗ψ2 non­

identical, they are also non-parallel. (Why?) It therefore follows from claim 3 that they do not 

represent the same state—a contradiction. 

So one of the four claims has to go.  Which one? 

To begin, observe that claim 3 derives it support from the statistical algorithm:  If there are 

sufficiently many observables that we can measure, then there will always be some measurement 

for which non-parallel vectors give different outcome probabilities.  But in that case, they must 

represent different states. In the case at hand, it suffices to produce one state of the form cφ1⊗ψ1 

+ cφ2⊗ψ2 (with φ1 and φ2 non-parallel, etc.) which can be “separated” in this way from any state 

of the form γ⊗ν. Physics provides examples aplenty: for instance, the singlet spin state 
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1 
2(z+z- - z-z+) has this feature. (We’ve seen this state before: it’s the one that gives rise to 

the perfectly correlated spin-experiments.)  So it looks like claim 3 is not the culprit. 

Consider now claim 2.  It’s not enough merely to deny this claim; one must also state that no 

vector of the form cφ1⊗ψ1 + cφ2⊗ψ2 represents a possible state of the two-particle system. 

Again, the theoretical treatment of a host of actual systems violates this requirement.  So it looks 

like claim 2 is not the culprit. 

Claim 4 in fact follows from a fundamental principle (to be discussed below) about how the 

state of a composite system determines the states of its component parts.  That principle is not 

wholly uncontroversial—although as far as I can tell, it’s about 97-98% uncontroversial.  Suffice 

it to say that it forms a part of every standard presentation of ordinary, non-relativistic quantum 

mechanics. 

That leaves claim 1 as the one that ought to be abandoned.  Here I’ll add two comments: 

First, it was already suspect on experimental grounds.  For example, we seem to be able to 

1prepare spin-2 particles in states such that they have a 50% chance of going up, no matter the 

direction of spin we choose; no vector will reproduce those probabilities, in accordance with the 

statistical algorithm.  (I say “seem” because if the given spin-measurement statistics are the only 

information we have, we can always insist that the measured particles aren’t really prepared to 

be in the same state, but rather that the preparation procedure randomly puts them in, say, either 

-z+ or z ; more on this later.) Second, as we’ll see in the next section, abandoning it is not that big 

a deal; there is a natural generalization of the representation of states which has the usual vector 

representation as a special case. So we don’t lose anything by giving up claim 1. 
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VIII. A non-redundant representation of physical states

Thus far, our representation of physical states has been highly redundant. For two vectors 

represent the same state iff they give rise to exactly the same probabilities. (Recall that all we 

mean by “state of a system”—so far!—is a compilation of the experimental probabilities 

associated with the system. Given that understanding of “state of a system”, the claim just stated 

follows trivially. But even those who invest the quantum mechanical representations of states 

with more physical significance endorse this claim, at least as long as they aren’t being misled 

by arguments such as van Fraassen’s (see Assignment #4).)  Thus if φ is normalized, it represents 

the same state as cφ, for any c such that |c| = 1, since <cφ | Pcφ> = c*c<φ | Pφ> = <φ | Pφ>, for 

any projection operator P. At the same time, there is rather a lot of waste, since every non-

normalized vector represents nothing whatsoever.  Let us see whether we can rectify this 

aesthetic oversight. Along the way, we’ll solve the problem introduced in the last section:  How 

can we represent the states of particles 1 and 2, when the two-particle system has the state 

cφ1⊗ψ1 + cφ2⊗ψ2? 

For certain linear operators A—called “trace-class” operators (see Hughes, section 5.1)—the 

following sum, called the trace of A, is well-defined and real-valued ({φi} is an orthonormal 

basis for our Hilbert space HS): 

Tr(A) = Σi<φi | Aφi>. 

It’s easily shown that the value of Tr(A) does not depend on the choice of orthonormal basis 

{φi}. For let {ψj} be some other orthonormal basis.  Since {ψj} and {φi} are both orthonormal 

bases, for each i, φi = Σj<ψj | φi>ψj; likewise, for each j, ψj = Σi <φi | ψj>φi. Therefore, 

Σi <φi | Aφi> = Σi < Σj <ψj | φi>ψj | Aφi> 

= Σij <φi | ψj><ψj | Aφi> 

= Σij <ψj | A<φi | ψj>φi> 
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= Σj <ψj | A(Σi <φi | ψj>φi)> 

= Σj <ψj | Aψj>. 

Next, if A and B are trace-class operators, then for any scalars a and b, Tr(aA + bB) = aTr(A) 

+ bTr(B). (This is more or less obvious.)  Finally, we will make use of (but not prove) the fact 

that if A is a trace-class operator and B is a bounded linear operator (i.e., |Bφ| ≤ b|φ|, for all φ and 

some real number b), then AB is a trace-class operator, and Tr(AB) = Tr(BA) (see Hughes, pp. 

137-8). 

Projection operators are bounded linear operators; projection operators onto finite-dimension 

subspaces are trace-class operators. So let Pα project onto the subspace of eigenvectors of 

Hermitian operator A with eigenvalue α, and consider the quantity Tr(PαPφ); this is well-

defined, since from the last paragraph we know that PαPφ is a trace-class operator. To evaluate 

this, choose an orthonormal basis {φi} where φ = φk. Then 

Tr(PαPφ) = Σi <φi | PαPφφi> = <φ | Pαφ>. 

This is familiar: it is just the probability that a measurement of the observable represented by 

A yields outcome α. So, instead of representing states (redundantly) by normalized vectors, we 

could equally well represent them (non-redundantly) by projection operators onto one-

dimensional subspaces, replacing the old algorithm for calculating probabilities of measurement 

outcomes with this new one: 

If a measurement of the observable A (represented by Hermitian operator A) is performed on 

a system S in state Pφ, then the probability that the outcome α is obtained is equal to Tr(PαPφ), 

where Pα is the projection operator onto the subspace of eigenvectors of A with eigenvalue α. 

In fact, our final, fully general representation of states will not be as one-dimensional 

projection operators, but as density operators. We define a density operator to be any weighted 
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sum Σi  ciPi, where the ci are non-negative real numbers such that Σi  ci = 1, and the Pi are 

projection operators. Thus, if HS is the Hilbert space for system S, then every density operator D 

on HS represents a possible physical state of S. We refine the algorithm for calculating outcome 

probabilities as follows: 

If a measurement of the observable A (represented by Hermitian operator A) is performed on 

a system S in state D, then the probability that the outcome α is obtained is equal to Tr(PαD), 

where Pα is the projection operator onto the subspace of eigenvectors of A with eigenvalue α. 

If we assume that sufficiently many Hermitian operators represents measurable observable 

quantities, then the representation of states by density operators will be non-redundant: if D1 ≠ 

D2, that is, there will be some measurement for which D1 and D2 yield different outcome 

probabilities, from which it follows that they must represent different states (I’ll omit the proof). 

One important bit of terminology:  If there is some ψ such that D = Pψ, then we say that D is 

a pure state; if not, we say that D is a mixed state. So far, pure states are the only states we’ve 

been dealing with; so it might seem at this point that there’s no need for mixed states.  Next, 

we’ll see that there is more than aesthetics at work in choosing this representation of states: 

mixed states are in fact indispensable.   

Let A be an Hermitian operator on H1 representing some observable pertaining to particle 1 

alone (e.g., the particle’s spin in some direction).  Let I be the identity operator on H2. Then A⊗I 

is an Hermitian operator on HS = H1⊗H2. We now make the fundamental assumption that A and 

A⊗I represent the same observable, in the sense that either can be used to calculate outcome 

probabilities for a measurement of this observable.  More precisely, suppose that DS is a density 
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operator on HS that represents the state of S, and D1 is a density operator on H1 that represents 

the state of particle 1. Then we require that the following hold: 

For all Hermitian operators A on H1, Tr(AD1) = Tr((A⊗I)DS). 

This is sometimes called the Reduction of States principle (restricted, here, to the particular 

case of a two-particle system). 

Recall the questions raised above: (i) How is HS related to each of the Hi? (ii) How are states 

of S related to states of the individual particles that make it up?  (iii) In particular, is the state of 

S fixed, once we know the states of the particles?  (iv) Conversely, are the states of the particles 

fixed, once we know the state of S?  We can now answer each of these. 

(i) In the general case of an n-particle system S, HS is the tensor product of the Hi: 


HS = H1 ⊗ H2 ⊗ … ⊗ Hn. 


(ii) The states of S are related to the states of the particles that compose it via the Reduction 

of States principle. 

(iii) The state of S is not fixed, once we know the states of the individual particles. 

To see this, consider again the case of the two-particle system.  Choose orthogonal, 

normalized vectors φ1,φ2 ∈ H1 and ψ1,ψ2 ∈ H2. Let Ψ = 1 (φ1ψ1 + φ2ψ2) . Let D1 = 2

1 1 
2(Pφ1

 + Pφ2
) ; D2 = 2(Pψ1

 + Pψ2
) . Then for any Hermitian operator A on H1 and B on H2, 

1Tr(AD1) = 2(<φ1 | Aφ1> + <φ2 | Aφ2>) ; and 

Tr(BD2) = 2
1(<ψ1 | Bψ1> + <ψ2 | Bψ2>) . 


Now suppose that DS = PΨ. Then, as is easily verified, 


1
Tr((A⊗I)DS) = <Ψ | (A⊗I)Ψ> = 2(<φ1 | Aφ1> + <φ2 | Aφ2>) ; and 
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1Tr((I⊗B)DS) = <Ψ | (I⊗B)Ψ> = 2(<ψ1 | Bψ1> + <ψ2 | Bψ2>) . 

Invoking the Reduction principle, we conclude that if the state of S is represented by DS = 

PΨ, then the state of particle 1 is D1, and the state of particle 2 is D2. 

1Suppose on the other hand that DS = 2(  + Pφ2ψ2
) . Then, again, it is easy to verifyPφ1ψ1


1
that Tr((A⊗I)DS) = 2(<φ1 | Aφ1> + <φ2 | Aφ2>) , etc.  Again invoking the Reduction principle, 

1we conclude that if the state of S is represented by DS = 2(  + Pφ2ψ2
) , then the state ofPφ1ψ1

particle 1 is D1, and the state of particle 2 is D2. But these two possible states of S are not 

equivalent, since there are Hermitian operators on HS for which they give different probabilities. 

For example, if DS = PΨ, then Tr(PΨDS) = 1; but if DS = 2
1(Pφ1ψ1

 + Pφ2ψ2
) , then Tr(PΨDS) = 

1 
2 . So if we knew only that particle 1 had state D1 and particle 2 state D2, we wouldn’t yet know 

the state of the composite system S. 

(iv) However, the state of S does determine the states of the particles which compose it. 

Again, consider the two-particle system.  Suppose the state of S is DS, and suppose that, 

consistent with the Reduction principle, the state of particle 1 could be either D or D’.  That is, 

for every Hermitian operator A on H1, Tr((A⊗I)DS) = Tr(AD) and Tr((A⊗I)DS) = Tr(AD’). 

Then for every such A, Tr(AD) = Tr(AD’). Hence D and D’ must represent the same state; 

further, since the representation in terms of density operators is nonredundant, D = D’. 
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