Semantics

Question 1

To prove:

- ' $\sim(\exists x)(F x \& G x)$ ' is true on I.

Proof:

1. ' $\sim(\exists x)(F x \& G x)$ ' is true on I iff every variable assignment d for I satisfies $' \sim(\exists x)(F x \& G x)$ ' (by the definition of truth).
2. Let d_{0} be an arbitrary variable assignment for I. d_{0} satisfies ' $\sim(\exists x)(F x \& G x)^{\prime}$ iff d_{0} does not satisfy ' $(\exists x)(F x \& G x)$ ' (by clause 3 of the definition of satisfaction).
3. d_{0} does not satisfy ' $(\exists x)(F x \& G x)$ ' iff there is no $\mathbf{u} \in U D$ such that $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies ' $\left.F x \& G x\right)^{\prime}$ (by clause 9 of the definition of satisfaction).
4. There is no $\mathbf{u} \in U D$ such that $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies ' $(F x \& G x)$ ' iff there is no $\mathbf{u} \in U D$ such that $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies both ' $F x$ ' and ' $G x$ ' (by clause 4 of the definition of satisfaction).
5. There is no $\mathbf{u} \in U D$ such that $d_{0}[\mathbf{u} / \cdot x$ '] satisfies both ' $F x$ ' and ' $G x$ ' iff there is no $\mathbf{u} \in U D$ such that $\left\langle d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]\left({ }^{‘} x^{\prime}\right)\right\rangle \in I\left({ }^{\prime} F^{\prime}\right)$ and $\left\langle d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]\left({ }^{\prime} x^{\prime}\right)\right\rangle \in$ $I\left({ }^{\prime} G^{\prime}\right)$ (by clause 2 in the definition of satisfaction (and the definition of denotation)).
6. $\langle a\rangle \notin I\left({ }^{‘} F^{\prime}\right)$ and $\langle b\rangle \notin I\left({ }^{‘} G^{\prime}\right)$, so there is no $\mathbf{u} \in U D$ such that $\left\langle d_{0}\left[\mathbf{u} /{ }^{\bullet} x^{\prime}\right]\left({ }^{‘} x^{\prime}\right)\right\rangle \in$ $I\left({ }^{\bullet} F^{\prime}\right)$ and $\left\langle d_{0}\left[\mathbf{u} /{ }^{\bullet} x^{\prime}\right]\left({ }^{\bullet} x^{\prime}\right)\right\rangle \in I\left({ }^{‘} G^{\prime}\right)$.
7. So d_{0} satisfies ' $\sim(\exists x)(F x \& G x)^{\prime}$ (by 2-6).
8. d_{0} was arbitrary, so every variable assignment d for I satisfies ' $\sim(\exists x)(F x \& G x)$ ' (by 7).
9. So ' $\sim(\exists x)(F x \& G x)$ ' is true on I (by 1,8$).$
Q.E.D.

Question 2

To prove:

- ' $(\forall x)(F x \equiv G x)$ ' is false on I.

Proof:

1. ' $(\forall x)(F x \equiv G x)$ ' is false on I iff no variable assignment d for I satisfies ' $(\forall x)(F x \equiv G x)$ ' (by the definition of falsehood).
2. Let d_{0} be an arbitrary variable assignment for I. d_{0} does not satisfy ${ }^{\prime}(\forall x)(F x \equiv G x)^{\prime}$ iff for for some $\mathbf{u} \in U D, d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ does not satisfy ' $(F x \equiv G x)$ ' (by clause 8 of the definition of satisfaction).
3. There is some $\mathbf{u} \in U D$ such that $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ does not satisfy ' $(F x \equiv G x)$ ' iff there is some $\mathbf{u} \in U D$ such that either $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies ' $F x$ ' and not ' $G x$ ', or $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies ' $G x$ ' and not ' $F x$ ' (by clause 7 of the definition of satisfaction).
4. There is some $\mathbf{u} \in U D$ such that $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies ' $F x$ ' and not ' $G x$ ' iff there is some $\mathbf{u} \in U D$ such that $\left\langle d_{0}\left[\mathbf{u} /{ }^{\bullet} x^{\prime}\right]\left({ }^{6} x^{\prime}\right)\right\rangle \in I\left({ }^{\prime} F^{\prime}\right)$ and $\left\langle d_{0}\left[\mathbf{u} /{ }^{6} x^{\prime}\right]\left({ }^{6} x^{\prime}\right)\right\rangle \notin$ $I\left({ }^{\prime} G^{\prime}\right)$ (by clause 2 of the definition of satisfaction (and the definition of denotation)).
5. a is such that $\left\langle d_{0}\left[a /{ }^{\prime} x^{\prime}\right]\left({ }^{6} x^{\prime}\right)\right\rangle \in I\left({ }^{6} F^{\prime}\right)$ and $\left\langle d_{0}\left[a /{ }^{6} x^{\prime}\right]\left({ }^{6} x^{\prime}\right)\right\rangle \notin I\left({ }^{\prime} G^{\prime}\right)$.
6. So there is some $\mathbf{u} \in U D$ such that $\left\langle d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]\left({ }^{6} x^{\prime}\right)\right\rangle \in I\left({ }^{‘} F^{\prime}\right)$ and $\left\langle d_{0}\left[\mathbf{u} /{ }^{6} x^{\prime}\right]\left({ }^{\prime} x^{\prime}\right)\right\rangle \notin$ $I\left({ }^{\prime} G^{\prime}\right)($ by 5$)$.
7. So there is there is some $\mathbf{u} \in U D$ such that either $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies ' $F x$ ' and not ' $G x$ ' (by 4,6).
8. So there is some $\mathbf{u} \in U D$ such that either $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies ' $F x$ ' and not ' $G x$ ', or $d_{0}\left[\mathbf{u} /{ }^{\prime} x^{\prime}\right]$ satisfies ' $G x$ ' and not ' $F x$ ' (by 7).
9. So d_{0} does not satisfy ' $(\forall x)(F x \equiv G x)^{\prime}($ by $2,3,8)$.
10. d_{0} was arbitrary, so no variable assignment d for I satisfies ' $(\forall x)(F x \equiv$ $G x)^{\prime}($ by 9$)$.
11. So ' $(\forall x)(F x \equiv G x)$ ' is false on I (by 1,10$)$.
Q.E.D.

Syntax (10.1E)

Question 1

Part (a)

1	$(\forall x) F x$	A
2	$F a$	$1, \forall \mathrm{E}$
3	$(\forall y) F y$	$2, \forall \mathrm{I}$

Part（d）

1	$(\exists x)(F x \& G x)$	A
2	$F a \& G a$	A／$/ \mathrm{E}$
3	Fa	2，\＆E
4	Ga	2，\＆E
5	$(\exists y) F y$	3 ，$\exists \mathrm{I}$
6	$(\exists w) G w$	4，ヨI
7	（ $\exists y$ ）$F y$	1，2－5，ヨE
8	$(\exists w) G w$	1，2－6，ヨE
9	$(\exists y) F y$ \＆（ $\exists w$ ）Gw	7，8，\＆I

Part（j）

1	$(\forall x)(F x \supset L x)$	A
2	$(\exists y) F y$	A
3	$F a$	$\mathrm{~A} / \exists \mathrm{E}$
4	$F a \supset L a$	$1, \forall \mathrm{E}$
5	$L a$	$3,4, \supset \mathrm{E}$
6	$(\exists x) L x$	$5, \exists \mathrm{I}$
7	$(\exists x) L x$	$2,3-6, \exists \mathrm{E}$

Question 2

Part（a）

The mistake is in line 3；this is supposed to be an application of universal elimination，but the sentence to which the rule was applied is not a universally quantified sentence；it is，rather，a conditional．Universal elimination can only be applied to a universally quantified sentence．

Part（b）

The mistake is in line 5 ．One cannot apply universal introduction to a sentence that contains a constant that is in an open assumption．The sentence on line four contains such a constant－viz．，the＇k＇．（The sentence on line 1 is the open assumption containing＇k＇．）So the application of universal introduction to line 4 to get line 5 is disallowed．

Part (c)

The important mistake is the one on line 3: the incorrect application of existential elimination. Existential elimination brings things out from sub-derivations; you can't use existential elimination to go from a sentence on a particular scope line directly to a sentence on the same scope line.

There is also a typo on line 4 ; the ' \exists ' shouldn't be there. But this is not the important (or, I gather, intended) mistake.

MIT OpenCourseWare
http://ocw.mit.edu

24.241 Logic I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

