
Problem Set 7: Answers Damien Rochford 

Question 1 

Of course, there a lots of examples. Here are the first ones that came to my 
mind that weren’t completely uninteresting. 

Part (a) 

Here’s one: 
(∀x)(Rxx ⊃ (∃y)Rxy) 

(In quasi-English: ‘For all things x, if x bears relation R to itself, then there is 
something to which x bears relation R.’) 

Part (b) 

The negation of the sentence above will do. But for variety’s sake, here another 
example: 

(∃x)(Fx&∼ Fx) 

(In quasi-English: ‘There exists something such that it is F and it is not the 
case that it is F .’) 

This one is pretty uninteresting, I admit. 

Part (c) 

This pair is kind of interesting: 

(∀x)(Fx ⊃ (A&∼ A)) 

∼ (∃x)Fx 

(In quasi-English: ‘For all x, if x is F , then a contradiction is true.’ ‘Nothing is 
F .’) 

Part (d) 

Voila: 
Fa 

∼ (∃x)Fx 

(In quasi-English: ‘a is F .’, ‘Nothing is F .’) 
Not something you need to know, but for those who are interested: this 

pair is quantificationally incompatible in PL. However, there are alternative 
languages such that sentences like these are not incompatible. The derivation 
systems that go with those languages are called ‘free logics’. 



Part(e) 

Check it out: 

{(∀x)(∀y)(Rxy ⊃ Ryx), (∀x)(∀y)(∀z)((Rxy&Ryz) ⊃ Rxz)} 

(∀x)Rxx 

(In quasi-English: {‘For all x and for all y, if x bears R to y, then y bears R to 
x.’, ‘For all x, y and z, if x bears R to y and y bears R to z, then x bears R to 
z.’}, and lastly ‘For all x, x bears R to x.’) 

Again, just for the interested: a relation R is what is called ‘symmetric’ iff 
the first sentence in the set above is true of it. R is what is called ‘transitive’ iff 
the second sentence in the set above is true of it. The last sentence, outside the 
set, is true iff R is ‘reflexive’. What I am claiming, in claiming that the above 
set entails the above sentence, is that every symmetric, transitive relation is 
reflexive. And that’s true. 

Question 2 

Here is such a sentence: 
(∀x)(Fx ⊃ Gx) 

There is no equivalent sentence of the other form because the only candidate is 
the string of symbols (∃x)Fx ⊃ Gx, and that is not a sentence of PL — the 
third ‘x’ is an unbound variable, and no sentence of PL contains an unbound 
variable. 

Question 3 (7.8E, part 2) 

There is more than one way to do each of these. I only provide one answer 
to each question here, but if your answer is something else that is obviously 
equivalent, that’s ok. (If you answer is equivalent, but not obviously so, that 
could be bad.) 

(c) 

∼ (∃x)(Fx&Exp) 

The main logical operator is the ‘∼’. 

(h) 

(∀x)((Fx&Ax) ⊃ (∃y)(Exy&(Fy& ∼ Ay))) 

The main logical operator is the ‘(∀x)’. 
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(i) 

(∃x)(Ax&∼ Fx&(∀y)((Fy&Ay) ⊃ Exy))


The main logical operator is the ‘(∃x)’.


(n) 

(∀x)(∃y)Dxy&(∀x)(∀y)(Dxy ⊃ (Ax&∼ Fx))


The main logical operator is the ‘&’.


Question 4 (7.8E, part 5) 

Even more ways to do these. Again, as long as your answer clearly means that 
same thing as what I have written, and it is fluent Enlglish, you’re ok. 

I use ‘number’ here to mean ‘positive integer’ (as it does, in many contexts). 

(a) 

The product of an even number and any number is an even number. 

(h) 

There is an even prime number. 

(n) 

If one number is larger than another, the second number is not larger than the 
first. 

(r) 

There is an even prime number, and every prime number larger than it is odd. 
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