Logic I – Session 24 Completeness of PD

We started to prove that PD is complete.
We were working on proving that an ES-variant of any C-PD set is a subset of an MC-∃C-PD set Γ*.
We set out a procedure for constructing Γ*, and proved that Γ* was consistent.
But there's one thing I need to correct...

 Alex asked last time why we need to deal with evenly subscripted sets. In my answer, I misidentified the reason.
 Our procedure for building Γ* included this clause:
 If Γi ∪ {Pi} is C-PD, and Pi is of the form (∃x)Q: Γi+1 is Γi ∪ {Pi, Q(a/x)}, where a is the alphabetically earliest constant not occurring in Pi or any member of Γi

I asked, how do we know we can add Q(a/x) to Γk ∪ {Pi}?
The answer someone gave, and I agreed with, relied on the thought that finitely constants appear in any Γi and Pi.
We were wrong.

- Our main goal is to show that if $\Gamma \models P$ then $\Gamma \vdash P$.
- We do *not* assume initially that Γ is finite --- that's why compactness is an interesting result.
- So we do *not* assume that $\Gamma \cup \{ \sim P \}$ is finite either!
- \odot So Γ might contain infinitely many constants.

- Now, in our construction of Γ*, we sometimes need to add Q(a/x) to Γk, where a is a constant that isn't in any sentences in the set.
 How do we know this is possible?
 - The answer explains why we bother transforming Γ∪{~P} into an evenly subscripted set.
- Let's now turn back to proving that our construction of T* yields a set that's MC-3C-PD.
- We proved that Γ* is consistent. Let's now prove that it's maximally consistent.

An ES-variant of $\Gamma \cup \{ \sim P \}$ is C-PD

Any ES-variant of $\Gamma \cup \{ \sim \mathbf{P} \} \subseteq a$ MC-3C-PD set Γ^* (11.4.4)

 \odot Goal: Show that Γ^* is maximally consistent.

Suppose the contrary: There's a $Pk \notin \Gamma^*$ s.t. $\Gamma^* \cup \{Pk\}$ is C-PD.

Since Pk is a PL sentence, it occurs kth in our enumeration.

- Ø By the def. of our Γ-sequence, $\Gamma k+1 = \Gamma k \cup \{Pk\}$ if that's C-PD.
- \oslash $\Gamma k \cup \{Pk\}$ is C-PD.

Since if {Pk} were inconsistent with Γk, it would be inconsistent with every superset of Γk, e.g. Γ*.

So $\Gamma k+1 = \Gamma k \cup \{Pk\}$ (...perhaps plus a substitution instance)

- But that means $Pk \in \Gamma k+1$, so because $\Gamma k+1 \subseteq \Gamma^*$, $Pk \in \Gamma^*$.
- Contradiction.

So there's no $Pk \notin \Gamma^*$ s.t. $\Gamma^* \cup \{Pk\}$ is C-PD. I.e. Γ^* is maximal.

An ES-variant of $\Gamma \cup \{ \sim P \}$ is C-PD

Any ES-variant of $\Gamma \cup \{ \sim \mathbf{P} \} \subseteq a$ MC-3C-PD set Γ^* (11.4.4)

 \odot Finally, let's show that Γ^* is existentially complete.

I.e., that for each sentence in Γ* of the form (∃x)Q, there's a substitution instance of (∃x)Q in Γ*.

So suppose $(\exists x)Q$ is in Γ^* .

 \oslash ($\exists x$)Q is in our enumeration, at some position k.

If it were IC-PD, then since $(\exists x)Q$ is in Γ^* , Γ^* would be IC-PD.

- Ø So $\Gamma k \cup \{(\exists x)Q\}$ is C-PD.
- But that means $\Gamma k+1$ is $\Gamma k \cup \{(\exists x)Q, Q(a/x)\}$, for some a.
- So if $(\exists x)Q$ is in Γ^* , so is some substitution instance.

- Suppose Γ^* is MC-PD and ∃C.
- We'll first prove some things about the membership of Γ*, then we'll give an interpretation on which every member is true.
 This will show that Γ* is Q-C.

𝔅 First, a helpful result: Γ^{*}⊢Q iff Q∈Γ^{*}.

- Suppose $\Gamma^*⊢Q$.
- Suppose Q∉Γ*. Then since Γ* is MC, Γ*∪{Q} is IC.
- Then Γ*∪{Q}⊢R&~R.
- \odot So by ~I, $\Gamma^* \vdash \sim \mathbb{Q}$.
- \odot So $\Gamma^* \vdash Q\&_{\sim}Q$, contradicting the fact that Γ^* is MC.
- So if $\Gamma^* ⊢ Q$ then $Q ∈ \Gamma^*$.

 - Then since $\{Q\}⊢Q$, and $\{Q\}⊆\Gamma^*$, $\Gamma^*⊢Q$.
- 𝔅 So if **Q**∈Γ^{*}, then Γ^{*}⊢**Q**.

Now let's begin proving facts about the membership of Γ^* .

Ø Suppose $P ∈ \Gamma^*$.

Ø Suppose $~P∈\Gamma^*$.

Then Γ^* is IC-PD, contradicting what we've proved.

So ~P∉Γ*.

So if $P \in \Gamma^*$ then ~ $P \notin \Gamma^*$. And contraposing: if ~ $P \in \Gamma^*$ then $P \notin \Gamma^*$.

Suppose P∉Γ*.

- Since Γ^* is MC, $\Gamma^* \cup \{P\}$ is IC-PD.
- 𝔅 So Γ^{*}∪{P} ⊢ Q&~Q.
- Ø But then $\Gamma^* \cup \{\sim P\}$ ⊢ Q&~Q. So $\Gamma^* \cup \{\sim P\}$ is IC-PD.
- 𝔅 So by ~E, Γ^{*} ⊢ ~**P**.
- \oslash We proved that if $\Gamma^* \vdash Q$, then $Q \in \Gamma^*$.
- \odot So since $\Gamma^* \vdash \sim P$, $\sim P \in \Gamma^*$.

So if P∉Γ*, then ~P∈Γ*. And contraposing: if ~P∉Γ* then P∈Γ*.

So, we have: P∈Γ* iff ~P∉Γ* and, equivalently, P∉Γ* iff ~P∈Γ*.
Similar results parallel our proofs about SD, e.g.:
P&Q∈Γ* iff P∈Γ* and Q∈Γ*.
P>Q∈Γ* iff P∈Γ* or Q∈Γ*.
P=Q∈Γ* iff P∈Γ* and Q∈Γ*, or P∉Γ* and Q∉Γ*.

New results will concern quantified sentences and their substitution instances.

To prove: $(∃x)P ∈ Γ^*$ iff for some constant a, $P(a/x) ∈ Γ^*$.

- Suppose $(\exists x) P \in \Gamma^*$.
- Since Γ^* is $\exists C$, there's some **a** such that $P(a/x) \in \Gamma^*$.
- So if $(\exists x)P \in \Gamma^*$, then there's some a such that $P(a/x) \in \Gamma^*$.
 - Now suppose for some constant a, $P(a/x) ∈ \Gamma^*$.
 - Since $\{P(a/x)\} \vdash (\exists x)P$ and $P(a/x) \in \Gamma^*$, we have $\Gamma^* \vdash (\exists x)P$.
 - We proved: $\Gamma^*⊢Q$ iff $Q∈\Gamma^*$.
 - So (∃x)P∈Γ*.

So if there's some a such that $P(a/x) \in \Gamma^*$, then (∃x) $P \in \Gamma^*$.

So we've shown: $(\exists x)P \in \Gamma^*$ iff for some constant **a**, $P(a/x) \in \Gamma^*$. We can prove a similar result for universally quantified sentences.

To prove: $(\forall x)P \in \Gamma^*$ iff for every constant a, P(a/x)∈ Γ*.

Suppose (∀x)P ∈ Γ*.

- For any a, since {(∀x)P}⊢P(a/x), Γ*⊢P(a/x).
- We proved earlier that if $\Gamma^*⊢Q$, then $Q∈\Gamma^*$.
- 𝔅 So P(a/x)∈Γ*.

So if (∀x)P∈Γ*, then for every constant a, P(a/x)∈Γ*.

Solve Now suppose: For every constant a, $P(a/x) \in \Gamma^*$.

- Suppose (∀x)P∉Γ*.
- 𝔅 We proved that if $P ∉ Γ^*$, then $~P ∈ Γ^*$.
- 𝔅 So ~(∀x)P∈Γ*.

- 𝔅 So (∃x)~P ∈ Γ*.

Since Γ^* is $\exists C$, now there's some **a** such that $\sim P(a/x) \in \Gamma^*$.

Then $P(a/x) ∉ Γ^*!$ Contradicts our assumption.

So it's not true that $(\forall x)P \notin \Gamma^*$. I.e., $(\forall x)P \in \Gamma^*$.

So if, for every constant a, P(a/x)∈Γ*, then $(\forall x)P∈\Gamma*$.

 \odot So here are our results about the membership of Γ^* .

 $P \in \Gamma^*$ iff $\sim P \notin \Gamma^*$

- \bigcirc **P**&Q∈ Γ * iff **P**∈ Γ * and **Q**∈ Γ *.
- \bigcirc $PvQ \in \Gamma^*$ iff $P \in \Gamma^*$ or $Q \in \Gamma^*$.
- \bigcirc **P** \supset **Q** \in **Г*** iff **P** \notin **Г*** or **Q** \in **Г***.

- This will allow us to prove that Γ* is Q-C by specifying an interpretation that makes all its members true.

- Now recall, in proving the analogous result for SD, we just specified a truth-value assignment.
- But interpretations for PL are more complicated, so we'll need to do more.
- In order to give an interpretation that works, let's first remember that can alphabetically enumerate the individual constants of PL.
- For any n, we have constants at positions n, n+1, ... in our enumeration.
- Each constant can be thus be associated with a different unique positive integer.
 - a with 1, b with 2, ... v with 22, a1 with 23, ... v4 with 88, ...

I* will be the following interpretation:

...

- UD = {n | n is a positive integer}
 For each sentence letter P, I*(P) = T iff P∈Γ*. (Just like SD!)
 For each i.c. a, I*(a) is the integer associated with a.
 a: 1
 v4: 88
- So For each n-place predicate letter A, I*(A) includes all and only the n-tuples <I*(a₁), ..., I*(aₙ)> such that Aa₁ ... aₙ ∈ Γ*.
- We'll show that every member of Γ^* is true on I*, by proving that for any sentence **P** of PL, **P** is true on I* iff $\mathbf{P} \in \Gamma^*$.

Our proof will be by mathematical induction on the number of OLOs in sentences.

Basis Clause: For each sentence P with zero OLOs,
P is true on I* iff $P \in \Gamma^*$.

Proof: P is either a sentence letter or atomic formula.

- If P is a sentence letter, I*(P)=T iff P∈Γ*, by def. of I*.
- If P is an atomic formula, then P is of the form $Aa_1 \dots a_n$.

So $Aa_1 \dots a_n$ is true on I* iff $Aa_1 \dots a_n \in \Gamma^*$.

So if P has zero OLOs, P is true on I* iff P∈Γ*.

- Inductive step: If for each sentence P with k OLOs, P is true on I* iff P ∈ Γ*, then for each sentence P with k+1 OLOs,
 P is true on I* iff P ∈ Γ*.
- Proof: Suppose that for each sentence P with k OLOs, P is true on I* iff $P \in \Gamma^*$.
- Then P has one of the following seven forms: ~Q, Q&R, QvR, Q⊃R, Q=R, (∀x)Q, or (∃x)Q.
- Thus there are 7 cases to test.
- The cases where P is a TF-compound are similar to cases we covered in discussing SD, so we'll only cover one.

- Suppose P is of the form QvR.
- To prove: **P** is true on I* iff $\mathbf{P} \in \Gamma^*$.
 - Suppose P is true on I*. Then either Q or R is true on I*.
 - Q and R each have k or fewer OLOs.
 - So by the inductive hypothesis, **Q** is true on I* iff $\mathbf{Q} \in \Gamma^*$, and **R** is true on I* iff $\mathbf{R} \in \Gamma^*$.
 - In each case, either $Q ∈ \Gamma^*$ or $R ∈ \Gamma^*$.

 - So QvR∈Γ*. I.e., P∈Γ*.

So if **P** is true on I*, then $P \in \Gamma^*$.

- Now $Q ∈ \Gamma^*$ or $R ∈ \Gamma^*$, since $Q ∨ R ∈ \Gamma^*$ iff $Q ∈ \Gamma^*$ or $R ∈ \Gamma^*$.
- By the inductive hypothesis, Q is true on I* iff Q∈Γ*, and
 R is true on I* iff R∈Γ*.
- \odot So either **Q** or **R** is true on I*.
- If either \mathbf{Q} or \mathbf{R} is true on I*, $\mathbf{Q}\mathbf{v}\mathbf{R}$ is true on I*.
- \odot So QvR is true on I*. I.e. P is true on I*.

 \odot So if **P** is of the form QvR, then **P** is true on I* iff **P** \in **Г***.

We've supposed:
For each sentence P with k OLOs, P is true on I* iff P ∈ Γ*.
And we're trying to prove:
For each sentence P with k+1 OLOs, P is true on I* iff P ∈ Γ*.
We're working by cases, for each form P could have.
Next we'll turn to cases where P is quantified.

- Suppose P is of the form $(\forall x)Q$.
- To prove: P is true on I* iff P∈Γ*.
 - Suppose P is true on I*. I.e., (∀x)Q is true on I*.
 - Then for every a, Q(a/x) is true on I*.
 - So For every a, Q(a/x) has k or fewer OLOs, and hence by the inductive hypothesis, for every a, $Q(a/x) \in \Gamma^*$.
 - We earlier showed that (∀x)P∈Γ* iff for every a, P(a/x)∈Γ*.
 So (∀x)Q∈Γ*. I.e. P∈Γ*.
- \odot So if **P** is true on I*, then **P** \in **Г***.

- Suppose P is false on I*. I.e. (∀x)Q is false on I*.
- (∀x)Q is false on I* iff for some ic a, Q(a/x) is false on I*. (?)
 (Every object in the UD of I* is named by some constant.)
 So for some ic a, Q(a/x) is false on I*.
- Sor every ic a, Q(a/x) has k or fewer OLOs, and hence by the inductive hyp., Q(a/x) is false on I* iff Q(a/x)∉Γ*.
- So for some ic a, Q(a/x)∉Γ*.
- So (∀x)Q∉Γ*. I.e. P∉Γ*.
 Again, we know that (∀x)Q∈Γ* iff for every ic a, Q(a/x)∈Γ*.
 So (∀x)Q∉Γ*. I.e. P∉Γ*.

So we've shown that if P is of the form (∀x)Q,
 P is true on I* iff P∈Γ*.

I won't go through the case for P of the form (∃x)Q, but the proof is similar. The completed mathematical induction would be:

Basis Clause: For each SL sentence P with zero OLOs,
P is true on I* iff $P \in \Gamma^*$.

• Inductive step: If for each SL sentence P with k OLOs, P is true on I* iff $P \in \Gamma^*$, then for each SL sentence P with k+1 OLOs, P is true on I* iff $P \in \Gamma^*$.

Onclusion: For any SL sentence P, P is true on I* iff P∈Γ*.

So there's an interpretation that mem Γ^* true. So Γ^* is Q-C.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.