Question 1

I first prove that if $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^*$, then $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$. I do this by proving the contrapositive — i.e., that if it is not the case that $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$, then it is not the case that $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^*$.

- 1. Suppose it is not the case that $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$.
- 2. Then $\lceil \sim \mathbf{P} \rceil \in \Gamma^{\star}$ and $\lceil \sim \mathbf{Q} \rceil \in \Gamma^{\star}$ (by **6.4.11**(a)).
- 3. So $\{ \ulcorner \sim \mathbf{P} \urcorner, \ulcorner \sim \mathbf{Q} \urcorner \} \subset \Gamma^{\star}$.
- 4. Now, $\{ \ulcorner \sim \mathbf{P} \urcorner, \ulcorner \sim \mathbf{Q} \urcorner \} \vdash \ulcorner \sim (\mathbf{P} \lor \mathbf{Q}) \urcorner$, in *SD* (proof below).
- 5. So $\lceil \sim (\mathbf{P} \lor \mathbf{Q}) \rceil \in \Gamma^{\star}$ (by 3, 4 and **6.4.9**).
- 6. So it is not the case that $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^{\star}$ (again by **6.4.11**(a)).

So, if $\[\mathbf{P} \lor \mathbf{Q} \] \in \Gamma^{\star}$, then $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$. Q.E.D.

Here is a proof of 4 (I think we did something very like this in class, but I do a derivation here anyway for completeness' sake).

1	$\sim {f P}$	А
2	$\sim {f Q}$	А
3	$\mathbf{P} \lor \mathbf{Q}$	$A/{\sim}I$
4	P	$A/\lor E$
5	P	4, R
6	Q	$A/\lor E$
7	$\sim \mathbf{P}$	$A/{\sim}E$
8	Q	6, R
9	$\sim \mathbf{Q}$	2, R
10	Р	7-9, $\sim E$
11	Р	3, 4-5, 6-10, $\lor E$
12	$\sim {f P}$	1, R
13	$\sim ({f P} \lor {f Q})$	3-12, $\sim I$

Now to prove the other direction: if $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$, then $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^*$. Again, I do this by proving the contrapositive.

- 1. Suppose it is not the case that $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^{\star}$.
- 2. Then $\lceil \sim (\mathbf{P} \lor \mathbf{Q}) \rceil \in \Gamma^{\star}$ (by **6.4.11**(a)).
- 3. So $\{ \ulcorner \sim (\mathbf{P} \lor \mathbf{Q}) \urcorner \} \subset \Gamma^{\star}$.

- 4. Now, $\{ \ulcorner \sim (\mathbf{P} \lor \mathbf{Q}) \urcorner \} \vdash \ulcorner \sim \mathbf{P} \urcorner$ in *SD*, and $\{ \ulcorner \sim (\mathbf{P} \lor \mathbf{Q}) \urcorner \} \vdash \urcorner \sim \mathbf{Q} \urcorner$ in *SD* (proof below).
- 5. So, $\lceil \sim \mathbf{P} \rceil \in \Gamma^*$ and $\lceil \sim \mathbf{Q} \rceil \in \Gamma^*$ (by 3, 4 and **6.4.9**).
- 6. So it is not the case that either $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$ (by 6.4.11(a) again).

So, if $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$, then $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^*$. Q.E.D. Here is a proof of the first half of 4 — i.e., that $\{\lceil \sim (\mathbf{P} \lor \mathbf{Q}) \rceil\} \vdash \lceil \sim \mathbf{P} \rceil$.

1	$\sim ({f P} ee {f Q})$	А
2	P	$A/{\sim}I$
3	$\mathbf{P} \lor \mathbf{Q}$	2, $\lor I$
4	$\sim (\mathbf{P} \lor \mathbf{Q})$	1, R
5	$\sim {f P}$	2-4, $\sim I$

The proof of the other half of 4 is the same, except you replace the '**P**'s on lines 2 and 5 with '**Q**'s.

So, I've proven that if $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^*$, then $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$, and I've proven that if $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$, then $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^*$. It follows that $\lceil \mathbf{P} \lor \mathbf{Q} \rceil \in \Gamma^*$ if and only if $\mathbf{P} \in \Gamma^*$ or $\mathbf{Q} \in \Gamma^*$. And that concludes the proof.

Question 2

We're trying to prove *Inductive Step*, on p. 273 of TLB, for the case in which \mathbf{P} , a sentence containing $\mathbf{k} + 1$ occurrences of connectives, has the form $\lceil \mathbf{Q} \lor \mathbf{R} \rceil$.

- 1. Suppose that every sentence of SL with **k** or fewer occurrences of connectives is such that it is true on \mathbf{A}^* if and only if it is a member of Γ^* (i.e., suppose the antecedent of *Inductive Step*).
- 2. Now, $\lceil \mathbf{Q} \lor \mathbf{R} \rceil$ is true on \mathbf{A}^* iff either \mathbf{Q} is true on \mathbf{A}^* or \mathbf{R} is true on \mathbf{A}^* (by definition of ' \lor ').
- 3. And **Q** is true on \mathbf{A}^* iff $\mathbf{Q} \in \Gamma^*$, and **R** is true on \mathbf{A}^* iff $\mathbf{R} \in \Gamma^*$ (by 1, and the fact that \mathbf{Q}, \mathbf{R} both contain \mathbf{k} or fewer occurences of connectives).
- 4. So $\lceil \mathbf{Q} \lor \mathbf{R} \rceil$ is true on \mathbf{A}^{\star} iff either $\mathbf{Q} \in \Gamma^{\star}$ or $\mathbf{R} \in \Gamma^{\star}$ (from 2, 3).
- 5. So $\lceil \mathbf{Q} \lor \mathbf{R} \rceil$ is true on \mathbf{A}^* if and only if $\lceil \mathbf{Q} \lor \mathbf{R} \rceil \in \Gamma^*$ (by 6.4.11(c) i.e., the thing we just proved in Question 1).

So Inductive Step is true for the case in which **P** has the form $\lceil \mathbf{Q} \lor \mathbf{R} \rceil$. Q.E.D.

Question 3

The completeness proof for SD will fail, as a proof for the completeness of SD^* , at the part where we try to prove **6.4.11**(b) — i.e., the proof that $\lceil \mathbf{P} \& \mathbf{Q} \rceil \in \Gamma^*$ if and only if both $\mathbf{P} \in \Gamma^*$ and $\mathbf{Q} \in \Gamma^*$ (where Γ^* is a maximal consistent-in-SD set of sentence of SL; \mathbf{P} , \mathbf{Q} are sentence of SL) will not go through. In particular, the proof that if $\lceil \mathbf{P} \& \mathbf{Q} \rceil \in \Gamma^*$ then both $\mathbf{P} \in \Gamma^*$ and $\mathbf{Q} \in \Gamma^*$ will not go through. Note that the proof of that part of **6.4.11**(b), on p. 272 of TLB, involves appealing to the Conjunction Elimination rule explicitly.

In fact, it will not, in general, be the case that a maximal consistent-in- SD^* set is such that if $\lceil \mathbf{P} \& \mathbf{Q} \rceil \in \Gamma^*$ then both $\mathbf{P} \in \Gamma^*$ and $\mathbf{Q} \in \Gamma^*$ (though this is quite hard to prove, and I don't do so here). There will, for example, be maximal consistent-in- SD^* sets that are supersets of $\{`A\&B', `\sim A'\}$.

Because the proof of **6.4.11**(b) fails, the proof of what the book calls the 'Consistency Lemma' fails too; in particular, case 2 of the inductive step fails. Even more in particular, the part of case 2 in which we prove that if $\lceil \mathbf{Q} \& \mathbf{R} \rceil$ is false on \mathbf{A}^* than it is not in Γ^* will fail. That part of the proof relies on the part of **6.4.11**(b) that fails without Conjunction Elimination. And you can see why: for a set that is a maximal consistent-in- SD^* superset of $\{`A\&B', \sim A'\}$, `A&B' will be false on \mathbf{A}^* , but it is in there anyway.

MIT OpenCourseWare http://ocw.mit.edu

24.241 Logic I Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.