Question 1

I first prove that if $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$, then $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$. I do this by proving the contrapositive - i.e., that if it is not the case that $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$, then it is not the case that $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$.

1. Suppose it is not the case that $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$.
2. Then $\ulcorner\sim \mathbf{P}\urcorner \in \Gamma^{\star}$ and $\ulcorner\sim \mathbf{Q}\urcorner \in \Gamma^{\star}$ (by 6.4.11(a)).
3. So $\{\ulcorner\sim \mathbf{P}\urcorner,\ulcorner\sim \mathbf{Q}\urcorner\} \subset \Gamma^{\star}$.
4. Now, $\{\ulcorner\sim \mathbf{P}\urcorner,\ulcorner\sim \mathbf{Q}\urcorner\} \vdash\ulcorner\sim(\mathbf{P} \vee \mathbf{Q})\urcorner$, in $S D$ (proof below).
5. So $\ulcorner\sim(\mathbf{P} \vee \mathbf{Q})\urcorner \in \Gamma^{\star}($ by 3,4 and $\mathbf{6 . 4 . 9})$.
6. So it is not the case that $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$ (again by 6.4.11(a)).

So, if $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$, then $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$. Q.E.D.
Here is a proof of 4 (I think we did something very like this in class, but I do a derivation here anyway for completeness' sake).

1	$\sim \mathbf{P}$	A
2	$\sim \mathbf{Q}$	A
3	$\mathbf{P} \vee \mathbf{Q}$	A/ $\sim \mathrm{I}$
4	P	A/VE
5	P	4, R
6	Q	A/VE
7	$\sim \mathbf{P}$	$\mathrm{A} / \sim \mathrm{E}$
8	Q	$6, \mathrm{R}$
9	$\sim \mathbf{Q}$	2, R
10	P	7-9, $\sim \mathrm{E}$
11	P	3, 4-5, 6-10, VE
12	$\sim \mathbf{P}$	1, R
13	$\sim(\mathbf{P} \vee \mathbf{Q})$	$3-12, \sim \mathrm{I}$

Now to prove the other direction: if $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$, then $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$. Again, I do this by proving the contrapositive.

1. Suppose it is not the case that $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$.
2. Then $\ulcorner\sim(\mathbf{P} \vee \mathbf{Q})\urcorner \in \Gamma^{\star}($ by $\mathbf{6 . 4 . 1 1}(\mathrm{a}))$.
3. So $\{\ulcorner\sim(\mathbf{P} \vee \mathbf{Q})\urcorner\} \subset \Gamma^{\star}$.
4. Now, $\{\ulcorner\sim(\mathbf{P} \vee \mathbf{Q})\urcorner\} \vdash\ulcorner\sim \mathbf{P}\urcorner$ in $S D$, and $\{\ulcorner\sim(\mathbf{P} \vee \mathbf{Q})\urcorner\} \vdash\ulcorner\sim \mathbf{Q}\ulcorner$ in $S D$ (proof below).
5. So, $\ulcorner\sim \mathbf{P}\urcorner \in \Gamma^{\star}$ and $\ulcorner\sim \mathbf{Q}\urcorner \in \Gamma^{\star}$ (by 3, 4 and 6.4.9).
6. So it is not the case that either $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$ (by 6.4.11(a) again).

So, if $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$, then $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$. Q.E.D.
Here is a proof of the first half of $4-$ i.e., that $\{\ulcorner\sim(\mathbf{P} \vee \mathbf{Q})\urcorner\} \vdash\ulcorner\sim \mathbf{P}\urcorner$.

The proof of the other half of 4 is the same, except you replace the ' \mathbf{P} 's on lines 2 and 5 with ' \mathbf{Q} 's.

So, I've proven that if $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$, then $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$, and I've proven that if $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$, then $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$. It follows that $\ulcorner\mathbf{P} \vee \mathbf{Q}\urcorner \in \Gamma^{\star}$ if and only if $\mathbf{P} \in \Gamma^{\star}$ or $\mathbf{Q} \in \Gamma^{\star}$. And that concludes the proof.

Question 2

We're trying to prove Inductive Step, on p. 273 of TLB, for the case in which \mathbf{P}, a sentence containing $\mathbf{k}+1$ occurrences of connectives, has the form $\ulcorner\mathbf{Q} \vee \mathbf{R}\urcorner$.

1. Suppose that every sentence of $S L$ with \mathbf{k} or fewer occurrences of connectives is such that it is true on \mathbf{A}^{\star} if and only if it is a member of Γ^{\star} (i.e., suppose the antecedent of Inductive Step).
2. Now, $\ulcorner\mathbf{Q} \vee \mathbf{R}\urcorner$ is true on \mathbf{A}^{\star} iff either \mathbf{Q} is true on \mathbf{A}^{\star} or \mathbf{R} is true on \mathbf{A}^{\star} (by definition of ' V ').
3. And \mathbf{Q} is true on \mathbf{A}^{\star} iff $\mathbf{Q} \in \Gamma^{\star}$, and \mathbf{R} is true on \mathbf{A}^{\star} iff $\mathbf{R} \in \Gamma^{\star}$ (by 1 , and the fact that \mathbf{Q}, \mathbf{R} both contain \mathbf{k} or fewer occurences of connectives).
4. So $\ulcorner\mathbf{Q} \vee \mathbf{R}\urcorner$ is true on \mathbf{A}^{\star} iff either $\mathbf{Q} \in \Gamma^{\star}$ or $\mathbf{R} \in \Gamma^{\star}$ (from 2, 3).
5. So $\ulcorner\mathbf{Q} \vee \mathbf{R}\urcorner$ is true on \mathbf{A}^{\star} if and only if $\ulcorner\mathbf{Q} \vee \mathbf{R}\urcorner \in \Gamma^{\star}$ (by $\mathbf{6 . 4 . 1 1 (c)}$ i.e., the thing we just proved in Question 1).

So Inductive Step is true for the case in which \mathbf{P} has the form $\ulcorner\mathbf{Q} \vee \mathbf{R}\urcorner$. Q.E.D.

Question 3

The completeness proof for $S D$ will fail, as a proof for the completeness of $S D^{\star}$, at the part where we try to prove $\mathbf{6 . 4 . 1 1}(\mathrm{b})$ - i.e., the proof that $\ulcorner\mathbf{P} \& \mathbf{Q}\urcorner \in \Gamma^{\star}$ if and only if both $\mathbf{P} \in \Gamma^{\star}$ and $\mathbf{Q} \in \Gamma^{\star}$ (where Γ^{\star} is a maximal consistent-in$S D$ set of sentence of $S L ; \mathbf{P}, \mathbf{Q}$ are sentence of $S L$) will not go through. In particular, the proof that if $\ulcorner\mathbf{P} \& \mathbf{Q}\urcorner \in \Gamma^{\star}$ then both $\mathbf{P} \in \Gamma^{\star}$ and $\mathbf{Q} \in \Gamma^{\star}$ will not go through. Note that the proof of that part of $\mathbf{6 . 4 . 1 1 (b) , ~ o n ~ p . ~} 272$ of TLB, involves appealing to the Conjunction Elimination rule explicitly.

In fact, it will not, in general, be the case that a maximal consistent-in-SD* set is such that if $\ulcorner\mathbf{P} \& \mathbf{Q}\urcorner \in \Gamma^{\star}$ then both $\mathbf{P} \in \Gamma^{\star}$ and $\mathbf{Q} \in \Gamma^{\star}$ (though this is quite hard to prove, and I don't do so here). There will, for example, be maximal consistent-in- $S D^{\star}$ sets that are supersets of $\left\{{ }^{\prime} A \& B^{\prime},{ }^{\prime} \sim A^{\prime}\right\}$.

Because the proof of $\mathbf{6 . 4 . 1 1}(\mathrm{b})$ fails, the proof of what the book calls the 'Consistency Lemma' fails too; in particular, case 2 of the inductive step fails. Even more in particular, the part of case 2 in which we prove that if $\ulcorner\mathbf{Q} \& \mathbf{R}\urcorner$ is false on \mathbf{A}^{\star} than it is not in Γ^{\star} will fail. That part of the proof relies on the part of 6.4.11(b) that fails without Conjunction Elimination. And you can see why: for a set that is a maximal consistent-in-SD* superset of $\left\{{ }^{\star} A \& B ', \sim A^{\prime}\right\}$, ' $A \& B$ ' will be false on \mathbf{A}^{\star}, but it is in there anyway.

MIT OpenCourseWare
http://ocw.mit.edu

24.241 Logic I

Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

