
Philosophy 244: #17—Intensional Objects

Intensional Objects

Entities obtained by stringing together “ordinary” objects, one per world and/or time,
are called intensional objects. They give us a new and more charitable take on Con-
verse Carban. If there has to be someone in charge of the Armed Forces at all times,
there’s an intensional entity The Commander in Chief who is always in charge of the
Armed Forces. If the first bird on a given morning is the only one who can be sure to
get a worm, then there’s an elusive further character the early bird who always gets
the worm. And so on. More examples please!

Here’s the problem: on the intensional object interpretation, which is what we’re
trying now, Converse Carban comes out valid. But it shouldn’t if we are interested
in contingent identity systems, for these were supposed to weaker than earlier sys-
tems. The idea was to step back from �I and whatever brings �I in its wake; nothing
new was to be added. Something new has been added, though, for Converse Car-
ban was not a theorem of those earlier systems.

This kind of trouble arises, it might be argued, because we’re allowing intensional
objects to be introduced at will; all imaginablle such objects, however gerrymandered
or unintuitive, have allowed into the domain. Suppose we try to limit the construction
somehow. An intensional object is a function i from worlds into the domain. A model
is a quintuple <WRDIV> where I is a set of intensional objects. Variable assignments
µ will now take variables not to domain elements but members of this set I, that is,
to particular intensional objects i. Instead of µ(x,w) we will now have µ(x) = i = a
function from worlds to regular objects. An x-alternative to µ will be a ρ taking every
y distinct from x to the same intensional object as µ; ρ(y)=µ(y).

[Vϕ”] Vµ(ϕ(x1....xn),w)=1 iff <µ(x1)(w)....µ(xn)(w),w>εV(ϕ)
[V∀] Vµ(∀xα,w)=1 iff Vρ(α,w)=1 for every x-alternative ρ of µ

A good portion of Carnap’s Meaning &
Necessity is devoted to defending this

A lot of logicians have thought there is something funny in these two clauses. double-dealing, which he called “The
When we’re interpreting predicates, variables contribute regular “extensional” ob- Method of Extension and Intension.”

jects, members of the domain: Quine called it ”Carnap’s curious doubleµ(x)(w) = i(w) = o. When we’re working with quan-
interpretation of the variables.”

tifiers, they range over intensional objects i, or functions from worlds to domain-
elements. Shouldn’t the predicates, including the identity predicate, apply to inten-
sional objects too? Then however we’d be back where we started, with identities
holding necessarily. How well our hopes for contingent identity are realized by this
method thus seems open to question. And not just to their values in the world

in question?

Logical Systems

How is contingent identity to be dealt with axiomatically? The Leibniz axiom has got
to be limited so that α is non-modal; in fact it suffices to apply it just to predicates:

I2” x=y⊃(ϕ(x)⊃ ϕ(y)) .

S+BF with the addition of I1 (x=x) and I2” will be S+CI. Soundness is easy. For
completeness we again need a canonical model. What will play the role of I, the set
of intensional objects? For each world w and variable x, let

ix(x)(w) = the first y such that x=yεw.
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I is the set of ix for each variable x, and the canonical assignment µ takes each x to

x. As usual, <x1....xn,w>εV(ϕ) iff ϕ(x1...xn)εw.

Prop. 18.1 Vµ(α,w)=1 iff αεw.
There’s some flexibility in the amount of
contingent identity/distinctness allowed.

Completeness follows as before. If α is S+CI-valid, then it holds in all worlds of all Say we want a semantics validating �I
odels built on S-frames. If the canonical model is built on an S-frame, then α holds (x=y⊃�x=y) but not necessarily �NI

n all worlds of the canonical model, that is, in all maximal S+CI-consistent sets. A (x,y⊃�x,y). Then we stipulate that
when wRu, if i and i2 agree on w, they

tatement belonging to all maximal consistent S+CI-sets is a theorem. Hence every
1

agree on u—while not stipulating that
alid α is a theorem, as promised. when wRu, if i1 and i2 agree on u, they

agree on w.

lenitude

f the intensional domain I consists of all intensional objects (all functions from W
nto D) then the converse Carban formula �∃xϕx⊃∃x�ϕx becomes valid. It is not
ny sort of contingent identity system we’re dealing with, in that case, because CI
ystems are weaker than, say, S+BF+�I+�NI, and S+BF+�I+�NI doesn’t have
∃xϕx⊃∃x�ϕx as a theorem.
Fine, so they’re not contingent identity systems. The question stlll arises: is their

ogic, the logic of ALL intensional objects, axiomatizable? The answer in a word is
O, except under special conditions. Of the systems S we have considered, the logic
f IOs based on S is unaxiomatizable with the single exception of S=S5.

A definition. Given a class C of frames, α is ”C-valid for intensional objects” iff

µ(α,w)=1 for every wεW in every intensional object model <WRDV> (I is omitted
ince it’s predictable from the rest) based on a frame <WR>εC. The claim is that Until further notice, C-valid means

-validity thus defined is not for the most part axiomatizable. C-valid for intensional objects.

The method of proof is interesting. Remember second-order logic, the logic that
ets us quantify into predicate position? There’s a way to translate wffs of second-
rder logic into wffs of modal predicate logic so that validity is preserved. This is

mportant because second-order logic is unaxiomatizable. If intensional modal logic We’ll be working with just a fragment

ere axiomatizable, with no restriction on the intensions, this would enable an ax- of second-order logic, but it too is
unaxiomatizable.

omatization of second-order logic via the translation. Ba-boom! Contradiction! So
he modal logic of all intensional objects is not axiomatizable.

The fragment L2 of 2nd order logic we need involves just (a) a bunch of one place
redicate variables ϕ, ψ, etc. and (b) a two-place predicate constant R. Just as the
erm position in ϕx can be existentially generalized in 1st order logic to obtain ∃xϕx,
he predicate position can be generalized in 2nd order logic to obtain ∃2ϕ ϕx. A
odel for L2 is just like a model for first-order logic except that, now that we’re under-

tanding ϕ, ψ, etc. as variables, their values are given by µ instead of V. For each
ne-place ϕ, µ(ϕ)⊂D. R is the only predicate constant; its value V(R) in a model
DV> is a subset of D×D. The only new semantical rule we will need is

[V∀2] Vµ(∀2ϕ α)=1 iff Vρ(α) = 1 for every ϕ-alternative ρ of µ.

The next step is to reconceive the semantics of L2 so that it bears on modality.
he domain D of L2 is conceived as a set W of worlds. The interpretation function
interprets R as the accessibility relation on D. To help us keep this in mind, we

efer to D as W, and to domain-elements as w. Since all that V does is identify the
ccessibility relation R, a model for language L2 is not essentially different from a
rame for modal propositional logic. <D,V> ”=” <W,R>.

i

m
i
s
v

P

I
i
a
s
�

l
N
o

V
s
C

l
o
i
w
i
t

p
t
t
m
s
o
<

T
V
r
a
f

2



Translation

Now we’re getting somewhere. Just as we imagine the domain of L2 as a set of
worlds, we can imagine the domain of our intensional object model as a set {0,1}
of truth-values. A subset A of W (from our second-order non-modal model) may be
coded by the intensional object iA taking w to 1 iff wεA and 0 if w<A. iA in the usual parlance is A’s character-

That’s the simple version anyway; it has to be complicated in two slightly mind- istic function.

bending ways. First, the truth-values associated with 1 and 0 will be allowed to flip
from world to world; 1 is sometimes truth and sometimes falsehood. Second, there
may be more objects in D than just {0,1}; it can be any set of objects as long as
they’re suitably subdivided into the ”true” and the ”false.” .

Every wff α of L2 is going to be translated into a wff τ(α) of a language L* of
modal predicate logic. L* has just a single one-place predicate T. T applies in a
world w to the domain elements that will count as ”true.” What it takes for a world w
to go into the set coded by iA is that iA(w)εV(T,w), that is, iA takes w to the subset of
its domain that plays the ”true” role.

Now the translation; the individual variables of L* are assumed to include all those
of L2 plus an individual variable xϕ for every predicate variable ϕ of L2.

τ(ϕx) = ^(Tx&Txϕ)
τ(xRy) = ^(Tx&^Ty)
τ(¬α) = ¬τ(α)
τ(α∨β) = τ(α)∨τ(β)
τ(∀xα) = ∀xτ(α)
τ(∀2ϕ α) = ∀xϕ τ(α)

The atomic cases are the strangest. Think of the first like this. If x in L2 is as-
signed a world w, then x in L* is assigned an intensional object i that is ”true” (that
satisfies T) only in w. Likewise if ϕ in L2 is assigned a subset A of W, then xϕ is as-
signed in L* an intensional object that is true (that satisfies T) in a world w iff wεA.

Bearing all this in mind, when will ^(Tx&Txϕ) be true? It will be true iff a world is
visible at which both Tx and Txϕ are true, iff a world is visible at which

(Tx) the world that µ assigned to x in L2 and
(Txφ) a member of the set of worlds that µ assigned to ϕ in L2.

....iff Vµ(ϕx,x) = 1. Likewise, ^(Tx&^Ty) is true iff Tx and ^Ty are true at some So the truth of ^(Tx&Txϕ) in the modal

visible world, iff Ty is true at the world language goes with the truth of^ ϕx in theµ assigns to x in L2, iff the world µ assigns
second-order language, and the truth of

to x bears R to the world assigned to y, iff Vµ(xRy) = 1. ^(Tx&^Ty) goes with the truth of xRy.

Testing

Suppose you are given a frame <WR> and an intensional objects model <WRDV*>
for L* based on <WR> in which, for every wεW, there are <u,w>εV*(T) and <v,w><V*(T),
that is, some domain elements are true and some false. µ for L2 and µ* for L* corre-
spond iff for every wεW and every variable x or ϕ of L2

(i) <µ*(x)(w),w>εV*(T) iff w=µ(x)
(ii) <µ*(xϕ)(w),w>εV*(T) iff wεµ(ϕ).

Where V is the valuation of L2 that maps the predicate R to the relation R of our
intensional objects model, and Vµ assigns to α the usual truth-value determined
according to the rules of 2nd-order logic,we have:
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Prop. 18.2: Suppose α is a wff of L2, wεW, wRµ(x) for every variable x, and µ and
µ* correspond. Then Vµ(α) = Vµ *(∗ τ(α),w).

Proof: See 338-340

Next we have to link up validity on a frame with validity in the corresponding inten-
sional objects model. Define

Wx =df ^Tx&∀y(�(Tx⊃Ty)∨�(Tx⊃¬Ty))

Lemma 18.3 Vµ *(Wx,w*)=1 iff w* sees a w s.t. <µ*(x)(w’),w’>εV*(T) iff w’=w.∗ For all w’.

This considered as a condition on µ* is just what it takes for µ* to correspond with
some µ, since we can just let µ(x) be the unique w such that <µ*(x)(w),w>εV*(T).

Prop. 18.4 If α(x1-xn) is an L2 wff, and α* = �(∃xTx&∃x¬Tx)&Wx1&...Wxn)⊃τ(α),
then α is valid on <WR> iff α* is valid on every IO model based on <WR>.

Unaxiomatizability

Now we are almost there. For a system to be axiomatizable is for there to be an
effective means of enumerating its theorems. If IO systems were axiomatizable then
we could enumerate the valid wffs of L2 by enumerating the wffs valid on every IO
model, and putting α on the list of L2 theorems whenever the enumeration hits α*.

Drilling down a bit: Suppose that S is a propositional modal system some of
whose frames <WR> have a number-like structure. W is countable, and R is linear
(of any two worlds, exactly one bears R to the other), transitive, and discrete (each
w Rs a w’ s.t. there is no w” between them). Then we will be able to define succes-
sor in terms of R: y is the successor of x iff xRy and there is no z such that xRzRy.
And there will be statements of L2 that via this definition express 2nd-order Peano’s
axioms, and that will truly characterize the S-frames with a number-like structure.

Let the conjunction of these Peano statements be PA2. The statements following
from PA2 in 2nd-order logic are precisely the arithmetical truths. The arithmetical
truths are very far from being effectively enumerable. But they would have to be if
S+IO was effectively enumerable, that is, {α* | α* is an L* sentence valid on all IO-
models built on S-frames} were effectively enumerable. For then by 18.4, {α | α is
2nd-order valid on any <DV> that’s an S-frame} would be effectively enumerable. But
then the following would be effectively enumerable, each because of the one before.

{β | AX⊃ There’s an infinite hierarchy of increas-
β is 2nd-order valid on any <DV> that’s an S-frame} ingly complex sets, with the effectively

{β | AX⊃β is 2nd-order valid} decidable sets and then the effectively

{β | is an arithmetical truth} enumerable one. Y is the next level upβ
from X iff it can be decided by a Turing
machine with an oracle for X. The arith-

But again it’s a known fact, the ”deep fact” behind Godel’s theorem, that the set of metical truths are more complex than
arithmetical truths is the furthest thing from effectively enumerable. anything on this hierarchy.
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