
Philosophy 244: #9— Modal Predicate Logic

Now we turn to modal predicate logic, the result of adding modal operators to first-
order quantification theory. First-order quantification theory is itself the result of making
two additions to propositional logic. First, we dig into the structure of atomic sentences,
replacing the simple indivisible p with things of the form

ϕx1x2....xk

that is, a k-ary predicate followed by k variables. Second, we introduce a new way of
forming complex sentences from simpler ones, a way that wouldn’t have been available
without the aforementioned digging. Whenever you’ve got a formula α(x) with a variable in
it, you can stick a quantifier in front. Actually you can stick a quantifier in

front regardless, but it doesn’t do any-

∀x (x) thing unless you’ve got a correspondingα
variable.

∃xα(x)

If flexibility is the property that ϕ(x) attributes to x, then the first of these says that
everything is flexible, and the second that something is flexible. The process can be re-
iterated with different variables, to get things like ∀x∃y ψ(x, y), which if admiration is the
relation expressed by ψ, says that everyone admires somebody. And so on indefinitely. The book’s name for first-order quan-

tification theory is “lower predicate
calculus” or LPC. The reason for the

Syntax “lower” is that we’re quantifying into
name-position only, not predicate-
positions as in second-order logic (∃X

Now let’s give the syntax and semantics formally; that we’ll be taking the universal quan- Xmc = Marcus and Kripke have some-

tifier ∀ as basic, the existential ∃ will be defined as ¬∀¬. A language L for LPC has as its thing in common). ”Lower” means the
same as ”first-order.”

lexicon

for each n ≥ 1, a denumerably infinite set of n-place predicates ϕ. ψ,...(P, Q,,.....)
a denumerably infinite set of individual variables x, y, z,...
the three logical symbols ¬,∨, ∀
left and right parentheses

The formation rules for wffs are

FR1 An n-place predicate followed by n individual variables is an atomic wff
FR2 If α is a wff so is ¬α
FR3 If α, β are wffs, so is (α ∨ β)
FR4 If α is a wff and x a variable then ∀x α is a wff.

The definitions of &, ⊃, and ≡ are as before. The existential quantifier is defined by

D∃ ∃x α =df ¬∀x¬α

The scope of a quantifier in α is the smallest sub-wff of α that contains it. (Examples.)
A variable x is called bound or free according to whether it is or isn’t in the scope of an
x-quantifier. Note that it is really occurrences of variables that are bound or free, and that An exception is made though for the

bound/free is always relative to an enclosing formula; x is bound in ∃x∀yRxy but free in variable immediately after the ∀ or
∃; this is neither bound nor free, it’s

the bit after the initial quantifier: ∀y Rxy. considered just part of the quantifier.
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Semantics

The first thing we need for an interpretation of L is a domain D to signal what we are
See p.237 for the informalities.

talking about. When we say ∃xα or ∀xα, this means that there is something in the domain
which satisfies α, or that everything in the domain satisfies α. The domain can in principle
be considered our interpretation of the quantifiers—D = V(∀)—in something like the way
that multiplication is our interpretation of conjunction; in that case the model would be
determined by V alone. If P is an n-place predicate, V(P) is a set of n-tuples drawn from Are the cases really analogous? What

the domain D. In the language of cross products, it’s a subset of D×...×D (n times). A does this mean for ∀’s status as a logical
constant?

modelM of L is an ordered pair <D,V> of a domaIn and an interpretation function.
Don’t variables have to stand for objects? Yes and no. Names when we get to them

will be assigned objects by V. But not variables; they stand for “arbitrary” or “unspecified”
objects. The reason is that there are two kinds of wffs. Those with free variables — open Kit Fine has a book taking arbitrary

wffs – we don’t assign truth-values to, so there’s no need to specify an object to help de- objects seriously as a distinctive sort of
object An arbitrary D has the properties

termine that truth-value. Those whose variables are all bound— closed wffs or sentences all Ds have in common, with a few
of L— we do assign truth-values to, but in a way that relies only on the pattern of vari- exceptions, e.g., non-arbitrariness.

ables in the sentence, and so does not require an assignment of particular objects to any
of them.

Consider ∀xPx. This will be true if V(P) = D, otherwise false. No need for x to stand
for any particular entity. As for Px, whether it should be counted true or false depends on
what we think of x as standing for. We could let V assign values to variables too, but then
we lose this freedom of construing it as standing for whatever we like. Also it is mainly
sentences we want to come out true or false in the model, so assigning a fixed value to x
would not accomplish much. Open wffs will be evaluable only if their

But again, though we don’t don’t want x to refer to anything in particular in our model universal closures are valid or anti-valid.

<D,V>, we do want to generalize over all the things it might be taken as referring to. This
in order to say, e.g., that ∀xPx is true iff Px is true “whatever we take x to be.” To accom-
plish this, let a value-assignment µ be a function mapping variables to arbitrary members
of the domain; for all variables x, µ(x)εD. We write Vµ(α)=1 to mean that α is true in the
model <D,V> when the variables are given the values assigned by µ. This approach en- Tarski called µ a “sequence,” and spoke

abled in 1930 the first recursive definition of truth for quantified languages. of satisfaction by a sequence of objects
rather than truth of those objects.

(Vϕ) Vµ(ϕ(x1....xn))=1 iff <µ(x1)...µ(xn)>εV(ϕ), otherwise 0.

(V¬) Vµ(¬α) = 1 iff Vµ(α)=0, otherwise 0

(V∨) Vµ(α∨β) = 1 iff Vµ(α)=1 or Vµ(β)=1 The interesting part of the definition,

(V∀) Vµ(∀xα)=1 iff Vρ(α) = 1 for every x-alternative and the part we most need the value-ρ to µ, otherwise 0
assignment µ for, comes with the
quantifiers. Say that ρ is an x-alternative

From this last and the rule for negation it follows that to µ if ρ agrees with µ on every variable
but (possibly) x.

(V∃) Vµ(∃xα)=1 iff Vρ(α)=1 for some x-alternative ρ to µ, otherwise 0.

Finally the all important notion of

Validity α is valid inM = <D, V> iff Vµ(α)=1 for every variable-assignment µ,
and valid (period) iff it’s valid in every modelM.

Axiomatization

This time we’ll state the axiom(s) schematically instead of leaning hard on a a uniform
substitution rule. The precise definition of α[y/x] is com-

plicated, because we don’t want x ’s free

PC Any LPC substitution-instance of a valid PC wff is an axiom of LPC. in α to turn into y ’s that are bound in
α[y/x]. See The Principle of Replace-

∀1 ∀xα ⊃ α[y/x] ment on pp.240-241.
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The rules are

MP `α, `α⊃β⇒ ` β

∀2 `(α⊃β)⇒ `(α⊃∀xβ) provided x is not free in α.
How would we show that every LPC

Some derived rules: theorem is valid?

UG `α⇒ `∀xα UG is the model for the rule of necessi-
UG⊃ `(α⊃β)⇒ `(∀xα⊃∀xβ) tation: `α⇒ `�α.

UG≡ `(α≡β)⇒ `(∀xα≡∀xβ)

Eq `α≡β⇒ `γ[α]≡γ[β]
where γ[α] differs from γ[β] only in having α at 0 or more places where γ[β] has β

RBV `∀xα≡∀yβ
where α differs from β only in having free x where and only where β has free y ∀xα and ∀yβ are “bound alphabetic

variants.”

Some theorems:

LPC1 ∀x(α⊃β)⊃(∀xα⊃∀xβ)

LPC2 ∀x(α⊃β)⊃(α ⊃ ∀xβ) provided x is not free in α

LPC3 ∃y(α[y/x]⊃∀xα) if y is not free in ∀xα E.g., ∃y(Fy ⊃ ∀xFx). Why is this valid?
QI ¬∃x¬α≡∀xα — quantifier interchange, generalizes a la LMI Either V(F) = D or not. If V(F) = D

then the sentence is true because
the conditional’s consequent is true.
Otherwise the domain contains a

Modal LPC thing not in V(F). ∃y(Fy ⊃ ....) is true
because Fy ⊃ ... is true (due to a false
antecedent) when y is assigned that

The language of modal LPC differs from the language of LPC in having the modal opera- thing as its value.

tor � as a lexical item, and in having a slightly amended second formation rule:

FR2’ If α is a wff then so are ¬α and �α

A modelM for modal LPC is a quadruple <W,R,D,V> in which <W,R> is a frame,
D is a domain, and V is a function from n-place predicates to, not n-tuples of domain ele-
ments, but n+1-tuples of domain elements and worlds — the idea being that <a,b,w>εV(ϕ)
iff a and b stand in the relation expressed by ϕ in world w.

(Vϕ) Vµ(ϕ(x1....xn),w)=1 iff < µ(x1)...µ(xn),w >εV(ϕ), otherwise 0.

(V¬) Vµ(¬α,w) = 1 iff Vµ(α,w)=0, otherwise 0

(V∨) Vµ(α ∨ β,w) = 1 iff Vµ(α,w)=1 or Vµ(β,w)=1 ρ is an x-variant of µ if ρ agrees with µ
(V�) V (�α,w) = 1 iff V (�α,u) = 1 for every u that w bears R to on every variable but (possibly) x.µ µ

(V∀) Vµ(∀xα,w)=1 iff Vρ(α,w)=1 for all x-variants ρ of µ

Finally the all important notion of

Validity α is valid inM = <WRDV> iff Vµ(α,w)=1 for all w and µ, and valid on <WR> iff
it’s valid in every modelM based on <WR>.

Systems of Modal Predicate Logic

Suppose S is a normal system of modal propositional logic. Then LPC+S is defined as ”Normal” = extension of K.

follows. Axioms:

S’ `α whenever α is an LPC substitution instance of an S-theorem,

∀1 `∀xα⊃α[y/x] if α[y/x] is α with a free y replacing every free x
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Rules:

NE `α⇒ `�α

MP `(α⊃β), `α⇒ `β

∀2 `(α ⊃ β)⇒ `(α ⊃ ∀xβ) provided x is not free in α

Another important potential axiom is the following, which concerns interactions be-
tween the quantifiers and �:

BF ` ∀x�α⊃�∀xα

This is the famous Barcan formula, named after Ruth Barcan Marcus. The notation
S+BF is used for LPC+S with BF added. Let’s see what the BF can do for us. The con-
verse is important too. Williamson argues in Modal Logic

as Metaphysics that both should be

BFC ` �∀x considered valid, because all worldsα⊃∀x�α
have the same domain.

How do these strike you intuitively? Everything is necessarily material, according to
the materialist. Is it necessary that everything be material? Necessarily everything exists.
Does it follow we are all like God in necessarily existing?

Recall LPC1 ∀x(α⊃β)⊃(∀xα⊃∀xβ). Can we generalize it to ∀x(αJβ)⊃(∀xαJ∀xβ)? Well, Recall that α J β — α fishhook β — is

in box terms it’s ∀x�( equivalent to �(α ⊃ )β) ⊃ (�∀xα⊃� ∀x β). To prove this, it’s enough to show that α ⊃ β

∀x�(α⊃β) ⊃ �∀x(α⊃ β) (since � and ∀ distribute over material implication). But that’s an
instance of BF.

Which is more plausible, BF or CBF? The converse of the Barcan formula is, interest-
ingly enough, a theorem even of LPC+K:

BFC �∀xα⊃∀x�α
1 ∀xα ⊃ α ∀1
2 �∀xα ⊃ �α (1)xDR1
3 �∀xα ⊃ ∀x�α (2)x∀2

How do modalities mix with the “opposite” sort of quantification? ∃x�α ⊃ �∃xα is
valid, as is ^∀xα ⊃ ∀x^α. Converses of these are not valid. Neither would we want them
to be. The converse of the first, �∃xα ⊃ ∃x�α, involves exactly the kind of mix-up that
Quine complained about in quantified modal logic. An instance would be, Necessarily
there is a number of planets only if something necessarily numbers the planets.

There are lots of modal systems S such that LPC+S does not have BF as a theorem. It
is a theorem, though, if S contains the Brouwer axiom B. Here is why:

BF ` ∀x�α⊃�∀xα
1 ∀x�α ⊃ �α ∀1
2 ^∀x�α ⊃ ^�α (1)xDR3
3 ^�α ⊃ α B
4 ^∀x�α ⊃ α (2),(3)xPC
5 ^∀x�α ⊃ ∀xα (4)x∀2
6 ∀x�α ⊃ �∀xα (5)xDR2

Next time: different systems of modal predicate logic, types of validity, soundness, essen-
tialism, de re and de dicto necessity.
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