
Philosophy 244: #4—Adequacy and Extensions

Metalogic

To be a theorem of K is to be derivable from the K-axioms by the K-inference rules.

This is a purely syntactical notion, which pays no attention at all what the symbols

might mean. To be K-valid, or as we put it, absolutely valid is to be successful in all

settings bar none. This is a semantical notion which has a great deal to do with what

the symbols mean; soon we will make it more semantical still by restating the definition

of validity in the vocabulary of models.

The point for now is that the notion of K-theoremhood and the notion and the

notion of absolute validity are prima facie as different as they could be. If we want to

claim a connection between the two notions the connection will have to be proved.

Two things will have to be proved.

Soundness: Every K-theorem is K-valid.

Completeness: Every K-valid formula is a K-theorem.

Soundness is easier; that’s what we’ll do today. Completeness is left for later. The

strategy for proving these things is worth sketching now, though, because they’re dis-

tinctive and interesting and convey some of the flavor of metalogical reasoning.

To establish soundness, we use mathematical induction. The basis step has us prov- Mathematical induction works like this.

ing that K’s axioms are all K-valid. To carry out the inductive step, we must show that Suppose you want to show that all Xs
are P. Suppose that every X can be

the property of K-validity is preserved under application of K’s inference rules. reached from a small number of “seeds”

To establish completeness, we look at the contrapositive: every non-theorem β or “generators” by repeated application
of a few operations. First show—

of K is K-invalid, that is, β has a countermodel. A non-theorem is something whose this is the basis step—that all of the
negation (or negatum) α is K-consistent, that is, you can’t derive a contradiction from generators are P. Then show—this is

α. It’s equivalent then to prove that every K-consistent α has a model: K-consistency the inductive step—that if some things
are P, then applying the operations to

implies K-satisfiability, in the jargon. them can never produce a non-P. From

To prove this we start with α, and then pile on other wffs, taking care to preserve these two steps the conclusion follows.
Why? Examples?

consistency, until your pile of wffs can’t be expanded any further without becoming

inconsistent. You then have a maximal consistent set with α in it. A maximal consis-
This is why we try to make do with

tent set has so much information in it that it tells us how to construct a model of K in a very few axioms and rules. Which

which all the set’s members, α included, are true. That α holds in this model means axioms and rules often itself reflects the
needs of these proofs. That is, axioms

that α is K-satisfiable, which is what we were trying to prove. and rules are chosen, sometimes, less
with a view to ordinary reasoning than
metalogical reasoning.

Validity

Soundness and completeness both rely on the notion of K-validity. The account in

terms of games was intuitive, which is good; but the features that made it so were

inessential to our purposes and in some cases positively misleading, which is bad. Let’s

try to strip some of these features away.

The set of players gives way to an arbitrary nonempty set W, which for motivational

reasons is referred to as the set of worlds. Non-emptiness is important if 2α is

Instead of the seeing-relation, we have an arbitrary binary relation R on W, that is, to imply 3α. Just as non-emptiness
is crucial in quantificational logic if

an arbitrary set of ordered pairs whose elements are drawn from the set of worlds. R is ∀xα(x) is to imply ∃xα(x). Empty

an accessibility relation on W. domains are allowed in “free logic.”

Corresponding to the notion of a seeing arrangement we’ll now have frames <W,R>.

Corresponding to the inscribed sheets of paper, one per player, we’ll now have a

value-assignment V which maps each world and propositional variable taken together

to a truth-value: V (p, w) = 0 or 1.
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Corresponding to the notion of a setting (on a seeing arrangement) we’ll now have a

model <W, R, V>, a “model based on the frame <W, R>.” V is said to be based on

the frame too.

So: a model M is an ordered triple <W,R,V> where W is an arbitrary nonempty

set, R is a binary relation on W (a subset of W xW ), and V is a value-assignment.

Next is to explain what is is for a formula to be true (false) at an M-world; this is done

by expanding the domain of V from propositional variables to all wffs of the language.

It’s given that for all propositional variables and wεW, V (p,w) = 0 or 1. That is the

basis clause of a recursive definition. Now we add the recursion clause. How do recursive definitions relate to
inductive proois?

(V¬) V (¬α, w) = 1 - V (α, w), that is,......

(V∨) V (α∨β) = max(V (α, w),V (α, w))

(V2) V (2α,w) = 1 iff V (α,u) = 1 for all u such that wRu, otherwise 0

Which sets up the definition of validity.

α is valid on frame <W,R> iff V (α,w) = 1 for all V based on <W,R> and w ε W,

α is K-valid, aka absolutely valid, iff α valid on every frame.

This may seem unnecessarily complicated! Why not just say: α is absolutely valid iff

it’s valid in every model? Why not indeed? Stay tuned for logics where collapsing the

levels leads to the wrong results.

Prop. 2.1 Every theorem of K is K-valid.

To get this we prove a more general result. Let K + Λ be the system obtained from

K by adding as extra axioms all the wffs in Λ, and keeping the transformation rules

unchanged.

Prop 2.2 If each αεΛ is valid on <W,R>, all theorems of K+Λ is <W,R>-valid too.
Prop. 2.1 is just the special case of 2.2

The proof of 2.2 uses two lemmas. where Λ is the empty set. (Why?)

Lemma 2.3 All valid PC wffs and axiom K are valid on all frames.

Lemma 2.4 For any frame F, the set of wffs valid on F is closed under K’s rules.

This is enough for 2.2. Why? Now the proofs.

Proof of 2.3: Let <W,R> be given. A valid PC-wff is true on every (regular, non-

modal) valuation V of its variables; so V (α,w) is true for every modal V, hence ev-

ery V based on <W,R>; so it is valid on <W,R>. Suppose for contradiction that

K is not valid on <W,R>. Then there is a V on <W,R> and a wεW such that (i)

V (2(p⊃q),w) = 1, (ii) V (2p,w) = 1, but (iii) V (2q,w) = 0. By (iii), w bears R to

a u such that V (q,u) = 0. By (ii), V (p,u) = 1. But then w bears R to a u such that

V (p⊃q,u) = 0, contrary to (i). 2

Proof of 2.4: Let <W,R> be given. [US] Suppose that α[β1/p1...] is not valid on

<W,R>. Then there’s a model based on <W,R> such that for some uεW, V (α,u)

= 0. Define V * so that for all wεW V *(pi,w) = V (βi,w). Then V *(α,w) = 0 —

proof by induction — so α was not valid on <W,R> in the first place. [MP] If α and

α⊃β are valid on <W,R>, then both are true in every world of every model based on

<W,R>; hence by (derived evaluation rule) (V⊃), the same applies to β. [N] If α is

valid on <W,R>, then for all models based on <W,R> and all uεW, V (α,u) = 1;

hence for all wεW, α is true in all worlds w bears R to; hence for all wεW, V (2α,w)

= 1; hence 2α is valid on <W,R>. 2

2



Extensions of K

Now, clearly the most noteworthy thing about system K is that the notion of necessity

it captures is not ”strengthening”: it’s not a notion according to which whatever is

necessary has got to be true. How do we know this? Proved earlier that 2p⊃p isn’t

K-valid, and by soundness, if it isn’t K-valid it isn’t a theorem of K. We look now at an

extension of K that adds “strengthening” as an additional axiom. System T is just like So named by the Belgian logician Feys

system K except its axioms are PC, K, and in 1937, working off of a system devised
by Godel. Feys wrote a book in 1958
with William Craig. Craig went on to

T 2p⊃p teach at Berkeley for many years and is
now a Professor Emeritus there.

This is called the axiom of necessity, not to be confused with the rule of necessi-

tation. This is probably the weakest system that anyone seriously regards as having a

chance of capturing the notion of metaphysical necessity. Here are a couple of impor- Later we might look at a paper of

tant theorems of T that are not theorems of K. Nathan Salmon’s arguing that nothing
stronger than T is philosophically

T1 p⊃3p defensible.

1. 2¬p ⊃¬p T

2. p⊃¬2¬p (1)xPC

3. p⊃3p (2)xDefN

T2 3(p⊃2p)

1 2p ⊃ 32p T1[ / ]

2 3(p⊃2p)≡(2p⊃32p) K7[ / ]

3 3(p⊃ 2p) (1),(2)xEq

Suppose we wanted to show that these weren’t theorems of K. How would we do it?

Can you think of countermodels? The main reason for mentioning T2 is to show that

the following, which might seem like just a dual-ish counterpart of the necessitation

rule, is not a rule of system T: Shouldn’t we be able to get this from
necessitation by contraposition?

`3α → `α
`α→`2α..........Necessitation

If this were a rule, then from T2 you’d get ¬`2α α.....Contraposition
`3

→¬`
¬α→`¬α.....Not-must=maybe-not

`(p⊃2p). `3β → `β......β subbed in for ¬α
Hmmm...

From which it follows by necessitation that

` 2(p⊃2p),

in other words, necessarily, any truth is necessarily true. Hopefully this is not a theorem

of T! Why intuitively would `3α → `α fail, though? How can it be a theorem that α

is possible when it’s not a theorem that α is true?

Validity for T

Think back to the argument a few days back that 2p⊃p isn’t absolutely valid. To get

a countermodel we had to use a non-reflexive frame. If that “had to” holds up, then

2p⊃p is valid on every frame that’s reflexive, that is, every world in W bears R to

itself.

Call a formula T-valid iff its valid on every reflexive frame. Propn. 2.2 shows, if

you think about it, that system T is sound relative to this definition of validity. (Now

we see the role of Λ is playing in that proposition.) Later we’ll see that the reflexive

semantics is complete as well.

For now let’s go back to the declaration above that 2(p⊃2p) had better not be

a theorem of T. How do we show it isn’t? Let’s think of it semantically. What do we

need to find? A reflexive frame on which 2(p⊃2p) is not valid. To get that we need

a model on such a frame where it isn’t true. The simplest idea would be a one-world
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model.....you take it from there.

System D

T is clearly an extension of K. Now we consider a weaker extension that lies midway

between K and T. If 2 expresses obligatoriness, we don’t want 2p⊃p to be a theo-

rem. Leibniz thought he could prove that our world is the best possible; if to be the

best possible it can’t have any unmet obligations, then Leibniz maybe would want p

ought to be the case, so it is the case to be a theorem. Leibniz was wrong about this,

though, as shown by Voltaire. Nobody today wants p ought to be the case, so it is the

case to come out a theorem.

But a weaker claim may still seem right: whatever ought to be the case is permit-

ted, that is, nothing is both obligatory and forbidden. This leads us to system D (for

deontic), defined as K with the additional axiom

D 2p ⊃ 3p.
Someone might I suppose want to

Our first theorem is to the effect that not absolutely everything is forbidden. disagree with even this, on the ground
that it rules out moral dilemmas: you

D1 3(p⊃p) ought to save Alice, and you ought to

1 p ⊃ p PC save Bert, but you can’t do both. Are
you permitted to save Bert? Maybe

2 2(p ⊃ p) (1)xNE not, since then you won’t be able to

3 2(p ⊃ p) ⊃ 3(p ⊃ p) D[p⊃p/p] fulfill your obligation to Alice.

4 3(p ⊃ p) (2),(3)xMP

A derived rule is `α → ` 3α. Does that mean every truth is permitted?! Let’s

hope not!

To place D with respect to our other systems, we ask: is D contained in T? Equiv-

alently is 2p⊃3p provable in T? It is if p⊃3p is provable in T. Hint: it’s more or less

the contrapositive of 2p⊃p. The next question is whether D is stronger than K. Clearly

so. The book shows that D is the weakest extension of K which has any theorems of

the form 3α.

How do we get this? Let K+ be an extension of K with 3α as a theorem. We have

to show that K+ contains D, which comes down to having 2α ⊃ 3α as a theorem

D 2p⊃3p

1 3α K+

2 q⊃(p⊃p) PC

3 α⊃(p⊃p) US[ / ]

4 3α⊃3(p⊃p) (3)xDR3

5 3(p⊃p) (1),(4)xMP

6 3(p⊃p) ≡ (2p ⊃ 3p) K7[ / ]

7 2p ⊃ 3p (5),(6)xMP

Chisholm’s Paradox of Contrary-to-Duty

Validity for D Imperatives

1. Smith ought to go help his neigh-
bors: 2gBy a dead end let’s mean a world that can’t see anything. A frame isserial if it con-

2. He ought to tell them he is coming,tains no dead ends; every world can see at least one world — maybe itself, maybe a
if he does: 2(g⊃t)

different world. D-validity is validity on every serial frame. To establish soundness it
3. If he doesn’t go, he ought not to

suffices by Prop. 2.2 to show that axiom D is valid on every serial frame. Suppose tell them he is coming: ¬g⊃¬2t

not; then some model based on a serial frame has a world w in which 2p holds and 3p 4. He is not going to help them: ¬g
fails. But the only way for that to happen is for w to be a dead end; if it could see any These claims ought to be consistent!

world u, u would have to both be and not be a p-world which is contradictory. Com- But, (2) implies 2g⊃2t (by K), which
with (1) implies 2t, while (3) and (4)

pleteness is left for later. Next time: S4, B, and S5; what they’re good for and their imply ¬2t by Modus Ponens.

relations to K, D, and T. The ordering is going to be: K < D < T < B, S4 < S5.
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