
Philosophy 244: 244 #3—Basic Modal Systems

Time to start looking at some specific logical systems, starting with our ”base”

system K – the system such that theoremhood in it corresponds to ”absolute” validity,

ie. validity in all seating arrangements whatsoever. Logical systems can be presented in

a number of ways, but we’ll do it axiomatically. This involves specifying

(a) the language in which wffs are formulated

(b) a selected set of wffs known as the axioms

(c) a set of transformation (inference) rules.

The system’s theorems will be the closure of the axioms under the inference rules,

ie., everything you can get from the former by repeated application of the latter.

Crucially all of the notions (a), (b), and (c) have got to be effective in the sense

that there’s a mechanical procedure for determining what counts as a wff of the lan-

guage, what counts as an axiom, and what counts as an (instance of) an inference

rule. What about a system’s theorems?

These procedures have also got to be non-semantic in nature. One needn’t know Should they too have to form an
effectively decidable set? Answer: NO.

what anything stands for or what is true to figure out what the wffs, axioms, and per- This is not to say theorem-hood is not

missible inferences, are. For this reason the axiomatic approach to logical systems is effectively decidable, just that it doesn’t
have to be. Decidability vs semi-

sometimes called the (or a) syntactic approach; the intended contrast being with the decidability (= recursive enumerability).
semantical approach via models and validity.

System K

Earlier we talked about absolute validity – validity in all seating arrangements, or

all frames – and said that this was the notion of validity captured by system K. What

is meant by this? That the theorems of K are precisely and without exception the

absolutely valid wffs. Another word for absolute validity is thus K -validity.

To present K I’ve got to tell you (a) what the wffs are, (b) what the axioms are, and

(c) what the inference rules are.

(a) The wffs, and indeed the wffs of all systems to be considered for quite a while, are

just the wffs of modal propositional calculus.

(b) The axioms are of two kinds; PC as written is a ”schema” that lays out a whole

bunch of axioms at once.

PC If α is a PC-valid wff, then α is an axiom.

K 2(p⊃q) ⊃ (2p⊃2q) is an axiom.

Note that PC stands in for an infinite number of axioms. How does that fit with the

idea that the axioms have to be specified effectively or algorithmically? K is just one

particular sentence, built on the atomic sentences p and q. Anything of K ’s form

will be a theorem, only the others are arrived at using an inference rule.

(c) K has three rules:

US gets us 2(p&r
US Substitution: Replacing p

⊃ p≡r)⊃ (2(p&r)
1..pn in a theorem by α1..αn yields a theorem. ⊃ 2(p≡r)). What else?

MP or Modus Ponens or Detachment: If α and α⊃β are theorems, so is β.

N or Necessitation: If α is a theorem, so is 2α. What can we get with N’s help
from 2(p&r ⊃ p≡r) ⊃ (2(p&r) ⊃

To represent the result of systematically substituting the β s for the p s in β, we 2(p≡r))?
i i

write α[β1/p1,...,βn/pn]. Where α is a wff and S is an axiomatic system, we write

`Sα to express that α is theorem of S. When `α is derivable from `α in the going

modal system we write `α → `β. With this we can state the rules more simply as
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US `α → α[β1/p1,...,βn/pn].

MP `α, ` α⊃β → `β

N `α → ` 2α

Notice that only the third of these is a specifically modal rule. N may strike you as

funny; why should α suddenly be entitled to sprout a 2 at the front? Remember that

α is only a theorem if it is valid ; if α is valid, meaning something like true in virtue of

the meaning of its logical symbols alone, then it could hardly fail (it seems) to be true

in all possible worlds in virtue of those same meanings, which means its necessitation is

valid. Later when we get to actuality we’ll see a possible hold in this reasoning. (The

President = the actual President is true in virtue of the meaning of its logical symbols,

but it doesn’t hold in all worlds.)

Proofs and Provability

A proof in S is a finite sequence of wffs, each of which is either (i) an axiom of S or

(ii) derived from earlier wffs by (iia) applying one of the transformation rules or (iib)

making a definitional substitution. Each line of a proof contains three items:

a wff,

a reference number for that wff, written immediately before it

a justification for the wff, written on the far right (not the far left as in the book)

Justifications are basically explanations of how it is that the wff satisfies condition

(i) or condition (ii). As for (i), axioms falling under PC are justified by writing ”PC,”

perhaps with a number to indicate which of the sample PC theorems the wff happens

to be. Axioms falling under K (there’s only one of these!) are justified by writing ”K.”

As for (ii), you should list both the inference rule (or definition) involved and the

lines that served as premises. Applications of US are justified by writing the earlier

line number and then indicating with the square bracket notation the substitution that

was made. Applications of MP and N are marked by ”?MP” and ”?N” respectively.

So, let’s do it. Like the book we’ll first prove two theorems in full detail, and then

give some methods for abbreviating proofs. K1 and K2 are proved on p. 27; we’ll do

theorem K1.

K1 2(p&q) ⊃ 2p&2q

1. p&q ⊃ p PC1

2. 2(p&q ⊃ p) (1)xN

3. 2(p ⊃ q) ⊃ (2p ⊃ 2q) K

4. 2(p&q ⊃ p) ⊃ (2p&q ⊃ 2p) (3),[p&q/p, p/q]

5. 2p&q ⊃ 2p (2),(4)xMP

6. p&q ⊃ q PC2

7. 2(p&q ⊃ q) (5)xN

8. 2(p&q ⊃ q) ⊃ (2p&q ⊃ 2q) (3),[p&q/p]

9. 2p&q ⊃ 2q (7),(8)xMP

10. (p ⊃ q) ⊃ ((p ⊃ r) ⊃ (p ⊃ (q&r)) PC3

11. (2(p&q) ⊃ 2p) ⊃ ((2(p&q) ⊃ 2q) ⊃ (2(p&q) ⊃ (2p&2q))) (10), [2(p&q)/p, 2p/q, 2q/r ]

12. (2(p&q) ⊃ 2q) ⊃ (2(p&q) ⊃ (2p&2q)) (5), (11)xMP

13. 2(p&q) ⊃ (2p&2q) (5), (11)xMP

You should go through the proof of K2 yourself. Here’s the proof of K3, which

shows how earlier theorems can be appealed to in new proofs.
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K3 2(p&q) ≡ 2p&2q

1. 2(p&q) ⊃ (2p&2q) K1

2. 2(p&q ⊃ p) (1)xN

3. 2(p ⊃ q) ⊃ (2p ⊃ 2q) K

4. 2(p&q ⊃ p) ⊃ (2p&q ⊃ 2p) (3),[p&q/p, p/q]

5. 2p&q ⊃ 2p (2),(4)xMP

6. p&q ⊃ q PC2

7. 2(p&q ⊃ q) (5)xN

8. 2(p&q ⊃ q) ⊃ (2p&q ⊃ 2q) (3),[p&q/p]

9. 2p&q ⊃ 2q (7),(8)xMP

10. (p ⊃ q) ⊃ ((p ⊃ r) ⊃ (p ⊃ (q&r)) PC3

11. (2(p&q) ⊃ 2p) ⊃ ((2(p&q) ⊃ 2q) ⊃ (2(p&q) ⊃ (2p&2q))) (10), [2(p&q)/p, 2p/q, 2q/r ]

12. (2(p&q) ⊃ 2q) ⊃ (2(p&q) ⊃ (2p&2q)) (5), (11)xMP

13. 2(p&q) ⊃ (2p&2q) (5), (11)xMP

Derived Rules

These are not strictly part of the system, but informal compression devices which we

convince ourselves by any means necessary don’t allow the proof of anything not prov-

able already, before they were introduced. They’re verboten unless each of their appli-

cations can be justified by regular rules albeit at much greater length.

DR2 ` p≡ q → ` 2p≡ q

1. α ≡ β Given

2. α ⊃ β (1)xPC

3. 2α ⊃ 2β (2)xDR1

4. β ⊃ α (1)xPC

5. 2β ⊃ 2α (4)xDR1

6. 2α ⊃ 2β (3), (5)xPC

Now a derived rule which is difficult even to state much less prove. It’s called Sub-

stitution of Equivalents, Eq for short. What it does is extend DR2 to all sentential

environments whatsoever. You might find it a bit reminiscent
of one of the intensionality schemas

Eq ` α≡β and `ϕ(α) → `ϕ(β/α). we considered above. How are they
related?

If two wffs are provably equivalent, then you can put one for the other in any the-

orem you like and the result will still be a theorem. Eq is proved by mathematical

induction. You show first that the result holds for simple ϕ’s and then that if it holds

for ϕ and ψ, it must hold too for ¬ϕ and ϕ∨ψ and 2ϕ. Part of why DR2 was proved

first is that it helps with that final step, closure under necessitation.

Back when (not way back when) we said that 2 and 3 are “dual” in the sense

that (i) 2p is equivalent to ¬3¬p and (ii) 3p is equivalent to ¬2¬p. Is this duality

respected by System K? Certainly (ii) holds, for that is how we defined 3. But what

about (i)? That’ll be our next theorem.

K5 2p ≡ ¬3¬p

1. p ≡ ¬¬p PC12 (DN)

2. 2p ≡ ¬¬2p (1) [2p/p]

3. 2p ≡ ¬¬2¬¬p (2)x(1)xEq

4. 2p ≡ ¬3¬p Def3

Now we can replace 2 by ¬3¬ anywhere we like in a theorem, and vice versa; and

likewise with 3 and ¬2¬ (that we had already by the definition of 3). A generaliza-

tion of this is as follows; it’s called 2-3 Interchange, or LMI:
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If α is a theorem, and β is the result of (i) replacing any sequence of modal opera-

tors by the “negative” of that sequence (boxes go in for diamonds and vice versa),

and (ii) inserting or deleting a single ¬ both before and after the sequence, then ? is

a theorem too.

Proof Sketch: Let A1...An be a sequence of boxes and diamonds, that is., each Ak is

either 2 or 3 . Let Ak
′ be 2 if Ak is 3 and vice versa. We start by showing that

` A1...Anp ≡ ¬A1
′...An

′¬p

By PC we have

` A1...Anp ≡ A1...Anp

On the right hand side, replace each 2 by ¬3¬ and each 3 by ¬2¬. This can be

done by K5 and the definition of 3, using derived rule Eq. This yields

` A1...Anp ≡ ¬A1
′¬¬ ...¬¬An

′¬p

Now use DN and Eq to eliminate all the double negations and the result is (*).

That is still not quite LMI but it’s on the way. To show that the two sides are intersub-

stitutable everywhere, and no matter what wff replaces p, use US and Eq. Next time: a

few more theorems and then we move on to validity in and soundness of K.
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