Philosophy 244: Modal Logic—Take Home Final
 Spring 2015

(1) Is $\vdash \square \alpha \Rightarrow \vdash \diamond \alpha$ a derived rule of K ? Is it a derived rule of T ? What about $\vdash \diamond \square \alpha$ $\Rightarrow \vdash \square \diamond \alpha$? What about $\vdash \square^{i} \alpha \Rightarrow \vdash \square^{j} \alpha$, where i and j are any two nonnegative integers?
Explain your answers.
(2) Using the method of semantic diagrams (Chapter 4), determine in which of the following systems $-\mathrm{K}, \mathrm{D}, \mathrm{T}, \mathrm{S} 4, \mathrm{~S} 5-$ the wff $\diamond(\diamond \diamond p \supset \diamond p)$ is valid. Show your work.
(3) A relation R is connected iff $y R z$ holds whenever $x R y$ and $x R z$ do. Question: is the characteristic S5-formula $\diamond \alpha \supset \square \diamond \alpha$ valid on all frames with a connected accessibility relation? Why or why not?
(4) Explain the proof of Theorem 6.11 to the effect that S 5 is complete, basing your answer on the suggestion given just below the theorem on p.121.
(5) Consider a definition of propositional "validity" that dispenses with the set W of worlds. An interpretation \mathcal{I} of the modal propositional language $\mathrm{L} \square$ is an ordered pair $<\mathcal{A}, \mathrm{R}>$, where
(i) \mathcal{A} is a set of classical truth-value assignments V for propositional logic, and
(ii) R is a binary relation on \mathcal{A}.

Each V in \mathcal{A} is extended to the full language by saying that $\mathrm{V}(\square \beta)=1$ iff $\mathrm{V}^{\prime}(\beta)=1$ for each V^{\prime} to which V bears R , otherwise $\mathrm{V}(\square \beta)=0$. α is called Valid for an interpretation \mathcal{I} iff $\mathrm{V}(\alpha)=1$ for each V in \mathcal{A}, and Valid full stop if it is Valid on all interpretations. Question: Is Validity the same as (absolute) validity ($=$ truth in all worlds of all models based on all frames)? If so, say why. If not, say why not.
(6) Show that the modal predicate logic $\mathrm{S} 4+\mathrm{BF}$ is complete with respect to constant domain models based on reflexive, transitive frames. Feel free to appeal to any theorems, corollaries, etc. that you like.
(7) S4.3 is S 4 with the additional axiom $\square(\square \mathrm{p} \supset \mathrm{q}) \vee \square(\square \mathrm{q} \supset \mathrm{p})$. Show that $L P C+S 4.3$ is complete with respect to expanding domain models based on reflexive, transitive, and connected frames. (This is problem 15.3 in the book.)
(8) Give three non-equivalent formalizations α_{1}, α_{2}, and α_{3} of "necessarily it is possible for the φ to ψ " in which the definite description "the φ " is assigned three distinct scopes: narrow, intermediate, and wide. Produce an S 5 model in which the three statements are true in different worlds, that is, the worlds where α_{1} is true \neq the worlds where α_{2} is true, the worlds where α_{1} is true \neq the worlds where α_{3} is true, and so on for all other pairs of α_{i} 's.
(9) Show that intensional object models in which predicates are treated as extensional need not validate I2, $\square \mathrm{I}$, or $\square \mathrm{NI}$, while intensional object models in which predicates (including $=$) are treated as intensional must validate all three.
(10) What is one cool thing you can do with counterpart theory?

MIT OpenCourseWare
http://ocw.mit.edu

24.244 Modal Logic

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

