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Lecture 25

Symmetry and Equilibrium

Last Time

Classification of Equilibrium

Positive Definite Forms

Homogeneous Functions

Gibbs-Duhem Equation

Further Restrictions on Material Properties
The considerations above place restrictions on the properties of stable materials. These ther-
modynamic constraints are independent from, but combine with, any symmetry properties if
the material in question. To remind you what you are probably learning in 3.13, restrictions
on the symmetry of a material follow from Neumann’s principle.

Neumann’s Principle

Any observable symmetry of a physical property of a ma-
terial must include the symmetry elements of the point
group of the material.
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Consider how this couples to the condition of a positive definite Hessian in a thermodynamic
system. In particular, consider a linear elastic material:26

εij = sijklσkl or, equivalently σij = cijklεkl (25-1)

or as a matrix equation
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c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66
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(25-2)

Adding strains to the internal degrees of freedom,

δ(U − T◦S + σ◦ ijεij) > 0 (25-3)

Therefore the second derivative will contain terms such as,

δ(
1

2
cijklεijεkl) > 0 (25-4)

or

1

2
(dε1, dε2, dε3, dε4, dε5, dε6)




c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66
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> 0 (25-5)

The stiffness matrix that must be positive definite for an isotropic material is:

cisotropic =




(2µ + λ) λ λ 0 0 0
λ (2µ + λ) λ 0 0 0
λ λ (2µ + λ) 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




(25-6)

26The summation convention is used. Any repeated index is summed over all possible values, i.e., xixi implies
x1x1 + x2x2 + x3x3.
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Where λ and µ are the elastic Lamé coefficients and are related to the isotropic elastic coeffi-
cients:

λel =First Lamé coefficient =

=
2Gelν

1− 2ν
= Kel − 2Gel

3
=

Eelν

(1 + ν)(1− 2ν)

Gel =Shear Modulus or Second Lamé coefficient =

=
Eel

2(1 + ν)
=

3

2
(Kel − λ) =

3Kel(1− 2ν)

2(1 + ν)

Eel =Young’s Modulus =

=
Gel(3λel + 2Gel)

λel + Gel

= 3Kel(1− 2ν)

ν =Poisson’s ratio =
lateral shrinkage

linear extension
=

=
λel

2(λel + Gel)

(25-7)

The matrix in Equation 25-6 has three unique eigenvalues: Eel/[2(1 + ν)], Eel/(1 + ν), and
Eel/(1− 2ν).

Therefore for an isotropic elastic material to be thermodynamically stable, the following
conditions must be satisfied, if E > 0 then −1 < ν < 1/227 Therefore, ν can be negative. This
is weird, but true. Cork has a small or almost negative Poisson’s ratio, which makes it easy to
push into a bottle and makes a good seal.

For a cubic material, the stiffness tensor is:

ccubic =




c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44




(25-8)

which has three eigenvalues, c11 − c12, c11 + 2c12, and c44.
The positive definite condition for a cubic elastic material is, then

c44 > 0 and c11 > c12 and c11 + 2c12 > 0 (25-9)

27While some materials do have a negative Poisson’s ratio, like some cellular materials
, they are unusual. Our considerations do not imply
that materials that have E < 0 and ν < −1 or E < 0 and ν > 1/2, but I have never heard of one that exists.
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Conditions of Multiphase Equilibrium

Below it will be shown, for a multiphase system, that the chemical potential in each phase
must be uniform and equal.

Consider the following simple multiphase system:

         γ−phase
(e.g, salty liquid water)

     β−phase
   (e.g., salty
water crystals)

   α−phase
(e.g., watery
 salt crystals)

Figure 25-1: An example of a multiphase system. P and T are constant and equilibrium
with a reservoir.

Application of the conditions of internal equilibrium to the entire system considering that
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it is composed of f phases:

dG =− SdT + V dP +
C∑

i=1

µidNi =

f∑
j=1

C∑
i=1

µj
idN j

i

= −SdT + V dP

+ µα
AdNα

A + µα
BdNα

B + . . . + µα
CdNα

C

+ µβ
AdNβ

A + µβ
BdNβ

B + . . . + µβ
CdNβ

C

...

+ µζ
AdN ζ

A + µζ
BdN ζ

B + . . . + µζ
CdN ζ

C

(25-10)

µj
i is the chemical potential of chemical species i in phase j.

Write this out for a three (f = 3) phase system composed of two (C = 2) species W and
B:

For a closed system,
dNα

B + dNβ
B + dNγ

B = 0 (25-11)

this follows for each possible species i, therefore:

µα
i = µβ

i = µγ
i (25-12)

In other words, the chemical potentials of any chemical species is equal in all the present
phases.

Or if we number the species i = 1, 2, . . . , C and the number of phases j = I, II, . . . , f :

µI
1 = µII

1 = µIII
1 = . . . = µf

1

µI
2 = µII

2 = µIII
2 = . . . = µf

2

... . . .

µI
C = µII

C = µIII
C = . . . = µf

C

(25-13)
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Each row has f − 1 equal signs; i.e. f − 1 equations. So in the above there are C(f − 1)
equations.

In addition we have, via the Gibbs-Duhem equation for each phase, another relation be-
tween the variables:

0 =SIdT − V IdP +
C∑

i=1

NI
i dµI

i

0 =SIIdT − V IIdP +
C∑

i=1

NII
i dµII

i

... =
...

0 =SfdT − V fdP +
C∑

i=1

N f
i dµf

i

(25-14)

that gives us another f equations. Therefore,
Let the number of free variables be D (degrees of freedom). Then,

D = (Cf + 2)− [C(f − 1) + f ] (25-15)

or:

D + f = C + 2 (25-16)

This is a relation between the number of degrees of freedom in a system and the number of
components. Commonly, one can think of the number of degrees of freedom in a system as the
number of phases that can co-exist, or D = P .

And this brings to mind the following..... limerick:

There was a recent graduate from MIT
Who was forced to send back her course three degree
she couldn’t make a phase plot
Because she had simply forgot
that P + F = 2 + C


