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PROFESSOR: Build things, what we'll do is this stuff will go on the web. Usually, we put it up the night before. We had some
problems with Stellar, but normally, you can actually see the lecture notes the night before on the web as a PDF.
And there will always be a paper copy for you here as well. Let me go through a few practical things.

So you know who we are. We have no TA this year. Normally, we have a TA. Because it's an off year, we're
actually going to run this with students out of our own group. Because there are five lab sessions, and there you
will have students from our own group helping you.

We will meet here for the lectures, 1390, but the labs will be in 1115. There'll be five of them, and we'll announce
them well ahead of time. There is a course website which is on Stellar.

There's not much on there, like I said, because we had some problems with it. But for later in the day and
tomorrow, you'll see course materials being uploaded on there. This is where extra readings, for example, will be
uploaded or links to readings, in case we can't post them ourselves.

Grades are determined by five problem sets. So there are five lab sessions. The way they work is that instead of
coming to class, we meet in the lab. And we give you an assignment, modeling assignment, and you start it
there.

And then you will never be able to finish it in that 90 minutes, but then you take it home. And typically, you have
two to three weeks for it to be due. So think of it as an extended homework problem.

We start you in the lab, because we feel it's important we solve the practical problems. You have to get a cold
running or something to do the modeling. So once that's done, you can just take it home and finish it there.

And we will give you computer access, so you don't need your own computing resources of where to run that. So
we'll work that all out in the first lab. And so because of that, there's no final exam in this course. I wouldn't really
know what to ask.

There's one thing. We really like students, if you're a graduate student, to register for credit, so not just listener
status. This is a course that's not required in any program. So the only way these courses stay alive is if people
actually register for them.

It's a sad thing, but the university administration only counts registered students in a class. So if we don't do this,
we have 20 people sitting here, but on paper, my dean tells me I only had three people in class, and that's how
it's counted in the department. So we really want people to register. Also, that forces you to do the problems, and
I feel in a modeling course, there really isn't much use if you don't do the problems.

Postdocs, of course, can't really register, so those are free to just come and listen. But I hope if your postdoc or
anything else, visitor, that you also come to the labs to do those. I think we have about 20 seats, so we'll be fine
with that. OK.

We don't have a very specific course text, but like I said, in some case, we'll give you review articles. We'll give
you handouts. There's a few good books though that you may want to browse through on occasion.



So depending on what's your main interest, the book by Allen and Tildesley is an old classic on computer
simulation of liquids. In the end, it's really a book on molecular dynamics. It's quite old by now, but it's a very
good basis to start from. It doesn't have the most advanced algorithms or new techniques in it per se, but it's
really still a very good book.

Rob Phillips wrote a newer book on, essentially, modeling which both contains continuum and atomistic
modeling. That has a heavy slant on mechanical behavior. So if you're more interested in that, that may be a
book that you want to look into. Jensen is one of my favorites, although it's heavily chemistry focused, modeling
of molecules and so, but it's actually very clearly written.

And Thijssen is a great book if you want to focus on ab initio methods and quantum mechanics, which we'll do
later in the course. And Frenkel and Smit is my favorite for statistical mechanics, if you want to learn about the
statistical mechanics of molecular dynamics and Monte Carlo methods and things like that. This is really a very,
very good book, very thoroughly done. OK.

So I should say a few words about the course objectives. When we designed this course, we deliberately made it
a somewhat introductory and overview subject. We wanted this to be a course that was not for experts. So if you
already know everything about ab initio methods and molecular dynamics and Monte Carlo, you may actually
start getting bored after a while. We really wanted this to be a course that an average graduate student,
somebody who was doing experimental research for example, also could take.

So what we mainly try to do is teach the tools of modern computation materials science and how they can be
applied to diverse materials problems. So we will give you technical details of the tools but only to the extent that
you need them to understand how you can apply them. OK? So we will, of course, tell you, for example what
molecular dynamics is, what the basis is of it, what some of the basic algorithms are. But we will not go into the
very detailed, novel algorithms to make it a factor of too fast or something like that. So we will not do a lot of
detailed algorithmic work in the course.

So there is a heavy focusing on understanding the physics that goes in and because of that the physics and the
applications that can come out. So because of that, you will occasionally see us teach materials theory rather
than computation. Because in some cases, I feel the hard part of computation is knowing what to compute, and
for that, you need some basic materials here. Like when I do a case study on diffusion, towards the end, I may
have to tell you a little bit about diffusion theory, activation barriers and correlation factors, because then we can
actually connect that to the things we can calculate.

So you should think of this as a course in modeling towards material science and materials application. We do
very little purely numerical work, actually almost none to speak of. OK. So the way I see atomistic modeling is
really as the integration of these four basic fields-- physics, mathematics, computer science, and material
science, and that's how we'll tend to approach it.

Let me go through the calendar, because it gives you a broad outline of the course. This calendar is always
subject to change. Even though we teach this with two people, we never seem to able to get our travel schedules
coordinated. In some cases, we also slip a little, but the gross outline will remain the same.



Essentially, there's the first section, which I would say is energy descriptions which is essentially from here to
here. This is energy methods. And it starts with more empirical methods, potentials things like embedded atom
method, and then it goes into ab initio.

So this is largely DFT, although we do some quantum chemistry. We give it some quantum chemistry basis as
well. After that, it's really finite temperature techniques. So we do Molecular Dynamics, MD, and that runs into
coarse-graining theory and Monte Carlo. So this is really finite temperature.

OK, and after that, it really is a-- I'll be honest-- a set of random topics. We do case studies. Last year, I did one
on hyperdynamics which is accelerated molecular dynamics. We did one on diffusion. This year, we have great
ambitions to do one on Green-Kubo relations and how you can extract transport properties.

We have a great lecture from Chris Wolverton, which we've done every year, which students really like. Chris is
the Head of Scientific Computing in Ford Motor Company and gives a lecture on how they use even first
principles calculation and modeling in general, in Ford and has a brilliant case that. It's really fascinating lecture,
how they saved the company millions. It's a great story how they saved the company millions by doing quantum
mechanics. So stay tuned for that.

So that's roughly how we work. As you can see, there are labs interspersed-- three, four, where is number three?
Here we go. Essentially, one on generic modeling which is really getting you introduced to building cells, and we
do this with potential models.

Two on density functional theory, one on the molecular dynamics, and one on Monte Carlo and coarse-graining
methods. So that's roughly how the course will work. So there are any questions on the schedule or topic
coverage in the course? Yes?

AUDIENCE: How long are the labs, and when do they take place?

PROFESSOR: Well the labs, so they start-- they are essentially during lecture time, but then you will have to continue it on own.
So we get you started on the problem, introduce you, show you where the codes are, how to run them. And
typically, in the earlier labs that are not computationally intensive, like the first one, you can really run things and
the answer comes back in no time. So we actually get some results already in class and discuss them.

On some of the computationally more intensive ones, like DFT, there'll would be less of that and more time that
you need to spend afterwards with them. OK? They tend to have about a due date that's two to three weeks after
the actual lab. OK? Any other questions? OK.

So I wanted to talk a little about the growing importance of modeling. I started computational modeling in 1988,
when it was a rarity, especially in material science department. Now, you see it everywhere.

It's one of these enormously growing fields. You'd be surprised, but even atomistic level modeling is probably
now more intensively done in industry than it is in academia. We think of it as a broader academic subject, but it
really has taken a foothold in corporations.



I wanted to show you a few examples of how I think that really showed the impact of modeling, where modeling
is used to make important decisions. This is a picture from the ASCI Program. When the US was planning to sign
the Nuclear Stockpile Treaty, which meant that-- the nuclear stockpile treaty is basically that you cannot test
nuclear missiles anymore by setting them off. Because essentially that's so the US was concerned how could we
verify the reliability of nuclear missiles, because they're essentially going to sit for 100 years in their silo.

And there was an enormous program in the US for, literally, they would just blow one up once in a while to see if
it still works, and now, they can't do that anymore. Although, the US has actually not ratified the Nuclear
Stockpile Treaty, they still are sticking with it. And some, I don't know, smart people decided what are we going
to do with all this money which was several hundred million dollars.

So they decided, well, we're going to model the reliability of nuclear missiles, and that led to what's called ASCI
Program, the Advanced Simulation Computing Initiative, which is literally one of the largest computational
modeling programs in the world now. It's definitely not all atomistics, but there definitely is a large atomistic
component on it. And the whole idea was, as they call it cynically, it's modeling from button to boom. So they
model everything-- aging of plutonium, aging of corrosion of the alloys, corrosion of the electronics.

Whether actually the time is actually ripe for that is another question. Whether you can reliably model all these
things is another question. But just another example that computing has taken on a quite important role.

Here's my favorite. This is-- or was, I don't know if was-- this was the largest computer for a while, the Earth
Simulator, in Japan. When it came out, it was the largest computer. I think it eclipsed the fastest computer in the
US by a factor of five, when it came out, and it's solely used to model environmental processes. The whole idea
was that the Japanese had the ambitious idea that they really wanted to use this for predicting climate change in
the end. There's other work done, but that's its main purpose.

I think now Blue Light that's being built, but that is actually not quite active, in Livermore, will be bigger than this.
But again, you see enormous computational resources spent. This is I think like several hundred million dollar
setup, enormous computational resources being set up to deal with what's in the end the very important
problem, environmental change. OK.

People usually don't believe me, but I once in my head made up a list of companies where I knew they were
doing first principles modeling in companies, and this is not a complete study. This is just the ones that I visited,
that I know of. There's actually not a complete study out, and I'll put the link on the web, this study that was
sponsored by the National Science Foundation and the University of Loyola. Where literally a panel for two years
visited companies all around the world and looked at what they did with modeling.

And so there's an enormously comprehensive list there of the kind of work that's being done in companies with
computational modeling on materials. But again, so you see a lot of big companies in here actually. The largest
groups that I know of are probably at Motorola, Siemens, Ford, Nippon Steel, and I think these days at Toyota as
well. These all have very substantial groups in atomistic modeling on materials.

OK. So this course is supposed to be interactive. We used to have this course in a small room. This is a bit of an
unusually big setting for us. So normally, like there's not enough seats for people which makes us feel much
better. So this is supposed to be somewhat interactive. So like MBA classes do, they ask you questions, and
you're supposed to answer.



Why are you here in the end? Why do you think modeling is useful? I know there's some familiar faces here,
people who did for the research, but what do you think-- what's so useful about it?

Why do you think companies do it? Because anything companies do is because it makes them money, or it saves
them money. So what's so great about it? Too early in the morning for that. Huh? What can you do better or
faster, or what is it that you cannot, maybe, unless you do it with modeling? Yes, sir.

AUDIENCE: You can set exact variables. Like in your experiment, you might think, if you're trying to set variables, that
they're changing a little bit.

PROFESSOR: You hit the nail right on. That's actually number one. It's not the one you usually bring up, control. The number
one reason people use modeling is control.

In essence, think of it as doing experiments in a controlled environment. OK? So because you have anomalous
control, you can very quickly understand what goes on in your systems, assuming that the answer that comes
out is right. That is the number one reason, to solve, to isolate phenomena by controlling the variables. But what
else do you think? There's usually one that people always bring up right away.

AUDIENCE: To do the experiment.

PROFESSOR: You don't have to do the experiment. So to predict things without having to do the work of the experiment, and
that's definitely becoming more and more an important role. OK? It's still done less than you think. Most
modeling is still done on materials that have already been made and that people have already done the
experiment on and that they're trying to understand. But more and more what you bring up which is trying to
predict truly before you actually do the experiment, the virtual searching for materials is playing a more and
more important role.

Let me show you a few examples that point this out. There's another one that we didn't bring up, and it's using
modeling where you cannot do the experiment or where it's really very hard or very expensive to do the
experiment. And here's one, this is from Alfie's group, which is, I think, Cambridge or--

AUDIENCE: London.

PROFESSOR: London, close by. OK. Where knowing what the composition is of the mantle in the Earth, both the composition
and the phases that are present, is an enormously difficult problem. But it's one of these actually quite literally
hot problems in materials geology.

We know that there's iron and magnesium and oxygen and silicon and a few other things, but in the end, we
really don't know what phases they form, what their elastic properties are, and things like that. And the
experiments are really hard. Somewhere in the mantle, pressures are I think anywhere from 50 to maybe 300
gigapascals. These are really hard experiments to do.

And I was yesterday at the University of Illinois in the Department of Geology, and they showed me the way they
do high pressure experiments with diamond anvil cells. You need about a 1/4 to 1/2 a carat diamond, first of all,
so these people have a safe in their lab, it's pretty cool, where they're diamonds sit. And then you have to make
really small samples, pushed very hard on them with a diamond anvil. OK?



So you're really pushing on it. This sits in an enormous container, because you have to keep a hundred
gigapascal on this thing, and then you have to characterize it. Can you imagine? So you have this enormous
holder, because you're putting it under 100 GPa, and you've got to see inside.

So they're really hard experiments to do. You can't really control the temperature very well. So this is where
modeling is great, if you believe the answers. So a lot of people do computational quantum mechanics on phases
under high pressure.

High pressure is trivial in computation. Just push on it, you change the lattice parameter, and you constrain it.
You control the variable, and you have high pressure. 300 gigapascal, no problem. OK.

This one I particularly like. There was an article in the New York Times. This is when science made the New York
Times which doesn't happen too often, in 1999. The people had basically been able to visualize electron
densities, orbitals, and that's the left picture.

This is I think in copper oxide. I forgot what this is. In some copper oxide, where they literally were able to
visualize the orbitals, and they look like d orbitals, don't they? This is actually one of these things that is quite an
experimental feat. It made the New York Times, because people could do it experimentally.

This is trivial computationally. When you do computational quantum mechanics, you will get orbitals and orbital
populations. That doesn't mean that the experiment is useless. OK? Because the experiment could be the critical
verification of what you do in your theory, but I'm just showing you that these things have an enormously
different level of complexity.

And if you're ever going to use both computations and experiment, the one key thing that will put you ahead is
understanding what is most efficient for a given problem, either computation or experiment. Because the
complexity of either has no relation to each other. So for some problems, computation is extremely efficient, and
experiment is really hard, and for some problems, it's the other way around. And understanding where to use
what, if you're going to use both, I think is the thing that would really get you ahead. And unfortunately, most of
the time, that doesn't happen, because usually people only do one of the two.

Here, for example, this is actually from Professor Marzari, the electron density in lead titanate which is a
perovskite, a ferroelectric. So you see beautiful orbitals without the graininess of experiments. The other thing is,
sometimes, you can do things fast computationally.

This is out of my own work. One of the areas we work in is predicting crystal structure. Typically, getting a phase
diagram of a material used to take about a PhD thesis. It takes you that long to make all the samples, do the
structural analysis, get the phase boundaries.

In about a six month time frame, we ran 15,000-- it says 10,000. We were up at 15,000-- first principles
calculations to find the structures, the ground-state structures in 80 metallic systems, 80 binary metallic systems.
So in some sense, we did 80 PhD thesises in about six months.

So there are certain things that you can now solve more efficiently computationally than experimentally. And I
think it makes sense, like let's say you are looking for structure of material, to first do the computation, and then
when you need to resolve issues, then do the experiment, rather than first blindly do the experiment. And we'll
talk a little more later about these things.



Control, we already talked about control. That's the number one. Here's one of the first examples of where I saw
that applied. In the early '80s, aluminum lithium was one of the key alloys that people thought of for airframes.
Because of course now, airframes are aluminum copper.

If you want to make it lighter, you have to go to lighter elements. Well, lithium is the lightest solid element. So
substituting the copper away and using aluminum lithium alloys was supposed to make really light alloys. It didn't
pan out, because they're not very weldable. So you actually find very little aluminum lithium on airplanes these
days.

But the key issue in aluminum lithium is that-- this is the stable phase diagram. So there's an FCC solid solution
in equilibrium with a compound, but what actually strengthens the material is a metastable precipitate which is
in here. And because it's metastable, it's very hard to study, because to study it, you need to make it big. To
strengthen the alloys, you have to keep it small. But to study it, like with microscopy, you need to make it big
enough.

But the problem is you can't anneal the precipitate, because it's metastable. If you anneal it to long, it goes
away. OK. So this was a great one for computation. In computation, something that's metastable, you can easily
make it stable by not letting the system evolve to whatever is stable, and that's what was done here.

This is a calculated phase diagram completely from first principles with the stable equilibria in solid lines and
then the metastable equilibrium, this was the precipitant phase. And so you can just isolate this thing and look at
it separately. OK. Let me skip that one.

You can use computation often to prove or disprove hypotheses in cases where it's hard to see experimentally. A
really ongoing and long story has been the defect in silicon. How do vacancies or interstitials look like in silicon?
The reason that they're a little odd is because it's such an open structure. Whereas in a close-packed metal, a
vacancy is just taking an atom out, and interstitials, you're just taking putting one in the interstitial position.

But because in silicon it's such a close-packed and covalently bonded network, every time you take an atom out,
you can actually have quite a bit of rearrangement of the other atoms. So it's quite an old problem, and it's
probably a problem where computation has made considerable impact. If you have an idea for how the vacancy
or interstitials should look like, you can test it computationally. You can calculate its energy and compare it to
other potential arrangements. OK.

This is my last piece of philosophy. After that, we'll start doing real work. But this is one that if you didn't
remember anything from the class except one thing, this is the one I want you to remember. If you do modeling,
and people will come up to you, and they will call it simulation, and modeling is not the same as simulation. You
should keep that in mind.

We actually do computation. Maybe we do modeling. We rarely ever do simulation. We sometimes do simulation.

The reason is that reality is very often too complex to simulate. OK? So rather, what we do is we isolate parts of
reality. OK? We say, this subset is important, and we do computation on that. And what that means is that you
will very often have to make judgments. OK?



Like if you're going to study corrosion, let's say you're going to study corrosion of a high strength steel. There is
no way in hell you're going to simulate that, because you don't even know what the relevant variables are. You
don't even know what the relevant environments are. OK? So what you're going to have to do is learn a lot about
the signs of corrosion, and take one isolated element, maybe surface attack by chlorine or something like that or
hydrogen going in and locally embrittling the material. So you will never just take your high strength steel, put it
in a computer, and wait for a long time, because you don't even know what environment to impose on that
system. OK?

So rarely do we do simulation to solve complex problems. Sometimes, we will isolate a piece and then simulate
on that, but we rarely simulate the full reality. And because of that, it's really important that you know the signs
of the field you work in. OK? You cannot have impact with computation without understanding your field of
application, period, because you will never know what to compute. OK?

So I think if you want to remember one thing, that's the one. The hardest part of computing is knowing what to
compute. OK? Everybody can learn molecular dynamics. Everybody can learn ab initio methods, but using them
in an intelligent way becomes the hard part. And I like the quote from Frank Jensen, computers don't solve
problems, people do, to paraphrase something.

OK. I'm going to skip this. I'll let you read this, an article we put on the web from James Langer. People are trying
to establish computing as the third branch of science. There's experiment, there's theory, and there's computing,
and it's an interesting article. OK.

So let me get to the real science that we can do today, at least a little bit. So the first maybe a few weeks or so,
we're going to talk about energy models. And the reason we start with energy models is because I feel that,
unless you have an adequate energetic description of your material, you really don't know if what comes out of
your computations is actually right or relevant. So typically, people distinguish empirical energy models from ab
initio or quantum mechanical, so this is what we sometimes call ab initio, or first principles. In some sense, in
empirical models, all you do is you take some form for the energy, and you fit it to any data you may have, and
sometimes, that data is quantum mechanically computed.

In quantum mechanics, you leave the fitting aside, and you go straight to just solving the Schrodinger equation
for whatever problem you're trying to solve. And there are methods in between which are semi-empirical which
are essentially quantum mechanical in form but empirical in the parameters. Essentially tied binding fits into
these, things that the chemists often do, like MINDO and INDO. So these are effectively, you could think of them
as parameterized Schrodinger equations almost, where the overlap integrals between wave functions are not
computed but are parameterized. So you save a lot of time.

Personally, I believe that that middlefield is losing in importance considerably. I think if we'd given this class 10
years ago, we would have talked a lot about that. Because people see that as a way of like, well, it's much faster
than ab initio, but you keep some of the accuracy of it.

I think that's less and less true these days. You don't keep as much accuracy as you usually want to, and it's not
as much faster anymore. So while there are obviously still problems where this is important, more and more
people just do the ab initio, period. Computers are cheap these days.



The reason we teach you about empirical models is because, first of all, you will encounter, and if you're going to
do really, really large problems, they can be quite useful. And also, they are really great handle I find to teach
you some of the essential energy physics that you need to deal with when studying different materials, and so
that's why I spend 2, 2 1/2 lectures on empirical models. OK. And so obviously, keep the obviously in mind, that if
you work with potentials, you have no information about electrons. You just have energies as a function of
position.

If you work with semi-empirical and quantum mechanics, you also have more information. You know something
about the electronic structure of the material. Which one is best, I think that's an irrelevant question, depends
what you can afford. OK.

So essentially, what you want if you want to do an empirical modeling method is that you want to have the
energy as a function of all the nuclear coordinates. That already itself implies an assumption, because the energy
is actually a function of the nuclear and the electronic coordinates. Typically, what we do is we variationally
remove the electronic coordinates, and that's essentially what's called the Born-Oppenheimer approximation. If
you think if your atom-- if you have a bunch of atoms together. So you have a set of coordinates that describe
the positions.

People think that the energy is uniquely determined by that set of coordinates, but that's actually not true.
Because you have electronic states, and in many cases, for a given state of the nuclei, you can have multiple
electronic states. OK? There'll be a ground state, but you can be in excited states as well.

What the Born-Oppenheimer approximation essentially assumes is that, for any set of nuclear coordinates, you
are always in the electronic ground state. So ER is derived from ER psi by essentially variationally removing psi
by minimizing over psi. OK? So what's the physical implementation here? If you're in a stationary configuration,
and you wait long enough, this is probably OK. If your atoms sit there frozen in some position, if you wait long
enough, the electrons will go to the ground state, especially when you're at 0 temperature.

Where is can wreak havoc is in certain molds of dynamics, because what you're really assuming is that, if you
move your atoms, your electrons follow infinitely fast. OK? Because if you move the atom a little bit, the energy
change is the energy change when the electrons relax immediately to the ground state, as you move the atoms.
OK? That's essentially the Born-Oppenheimer approximation.

So when is this not going to be true? It's when the atoms move really fast, or the electrons move really slow, and
there are cases like that. This is one of these approximations that we want to believe is always true, because it's
very hard to do anything else. So we kind of kid ourselves, because it's very hard to verify as well. But there are
long-lived excited states in materials.

There are defects in semiconductors, for example, EL2 in gallium arsenide was a famous one that has very long-
lived excited states, where there are essentially two Born-Oppenheimer surfaces. Let's call one the ground state
one, and then there's another one that's the excited state one. And the interesting thing was they gave you
different nuclear coordinates. So if you minimized it under one equipotential surface and under the other one,
you ended up in a different nuclear configuration. So you see then, you have a problem.



You can find the lowest energy configuration of the nuclei, unless you know what the electrons do. So you now
have a coupled problem. OK? So that's a non-obvious violation of the Born-Oppenheimer approximation. In fast
dynamics, things that move fast, like protons. The lightest nucleus or protons can move very fast, and in some
cases, the electrons won't follow fast enough.

In insulators, let's say you studied diffusion of charged ions in insulators. OK? So I work on battery materials. It's
all about lithium plus diffusion, lithium ions diffuse. Well, if the ion diffuses-- if the iron hops very fast, but I'm in
an insulator, maybe the electron won't follow fast enough. OK? So I'm going away from the Born-Oppenheimer
surface there. OK?

So this problem actually appears more than you think. It's just that we don't know how to deal with it. So we like,
shush, remove it from our thoughts.

The other obvious violation of Born-Oppenheimer is when you're at nonzero temperature. When you're at
nonzero temperature, you have a finite probability to actually occupy the higher level electronic citations, so the
higher energy electronics states. That's not a really big problem. It is technically a violation of the Born-
Oppenheimer approximation, but essentially, it's easy to solve.

You can replace this minimum. So minimizing it by statistically averaging over the right levels by literally doing a
statistical weighting of how the levels are populated. Then, they do a statistical mechanics approach, and we'll
talk much more about these things when we talk about coarse graining methods in the later part of the course.
So temperature isn't a big deal for Born-Oppenheimer. OK.

So here's what we're going to do on potentials. There are as many different potentials as there are people.
Everybody has their favorite one. So we're going to pick and choose, and I'm mainly going to pick and choose
based on the materials physics I can teach you with them.

So we're going to talk about a few particular forms and the physical limitations that they introduce, and I'm going
to start with pair potentials, because they're the obvious one. That'll be today, and then that'll obviously lead us,
the failures of those will lead us into many body potentials and pair functionals. This one will be particularly
relevant for covalent delocalized materials, like metals, and this is for delocalized-- sorry. Sorry, covalent
localized. So we're mainly going to talk about the form of these things. I'm not going to spend a whole lot of time
talking about the detailed parameters you put in. OK.

So here's pair potentials. Obviously, what are you really saying when you use pair potentials to model something?
You're saying that, if I have a bunch of atoms together, I can sum their energy from pairwise interactions.

So you're saying that this interaction between these two atoms has nothing to do with whether this atom or that
atom is present. That's essentially the physics of what you're saying. You're summing the energy. In some cases,
you take a constant, and then simply a sum of interaction potentials that only depend on the distance between
two atoms.

Pair potentials pretty much always have the same form. They are attractive at intermediate to long distance, and
they are repulsive at short distance. And they have to be repulsive at short distance, because otherwise, your
system collapses into itself.



AUDIENCE: Sorry. I left my phone. I just don't see it. Sorry to interrupt.

PROFESSOR: You left what?

AUDIENCE: My phone. I'm sorry.

PROFESSOR: I didn't see a phone.

AUDIENCE: Sorry. Sorry.

PROFESSOR: No problem. OK. Every lecture will have something like that. Something odd happens. We do it deliberately. No.

One issue, practical issue with potentials, is that you have to truncate them. OK? Because you want to keep this
pairwise distance not out to infinity. Most potential is just the form they have. They slowly decay, and people do
all kinds of tricks.

The problem is if you say, I'm only going to truncate up to here, that you have this discontinuity. Let me see if I
can make a wide slide, if I remember how to do this. Ah, magic. OK.

So let's say I truncate the potential here at this distance. Then essentially, my potential really looks like this. I
have this discontinuity in it which is not very good. Because whenever atoms move in and out of this range, they
actually have a strong energy jump, as they move in and out of that range.

So people do all kinds of tricks. You can smooth this, like attach some spline to it that smooths this out to zero.
Sometimes, you want to have literally zero at some distance. Sometimes, you also like zero derivative, so you
have continuous forces.

Some people use shifted potentials which is kind of cute. If you know that this has some value, let's say epsilon
here, you just shift the potential up by epsilon. So now, it's zero at your cutoff, but of course, the force would still
be discontinuous, because the force would be the derivative. OK.

The most simple potential form that you'll sometimes see used is the Lennard-Jones potential which has an R to
the 6th which is the attractive part. OK? That gives you the attractions and has the negative sign in front, and the
R to the 12th which gives you the repulsion. The R to the 6th term can actually be physically justified. It comes
from the interaction between fluctuating dipoles.

If you have an atom here with its electron cloud and an atom here, and if these are inert atoms, so with filled
electron shell, so there's no covalent bonding going on with them. So these are either ions with a filled shell, or
they're noble gases. Then, there is no direct covalent interaction, so the interaction you get is from fluctuating
dipoles. So at some point, there's a dipole that, just from fluctuations, that sets up here, and that will induce a
dipole in the other electron cloud.

And so the interaction between these dipoles and these dipoles, if you actually look at it, gives you an R to the
6th. So this piece is physically justifiable, and that's where Lennard-Jones got it from. It's essentially the form of
what's called a Van der Waals interaction which is the interaction between inner shells.



So where does the R to the 12th come from, you think? Obviously, you need something steep to get that.
Otherwise, the ions fly into each other. You need this steep repulsive part when the ions come very close
together, and essentially what the physics of it is the Pauli repulsion. As the electron clouds come into each
other, remember, the electrons cannot occupy exactly the same quantum state.

And so as you bring them closer, you're almost forcing them to occupy the same quantum state, but why R to the
12th? It's really because it's the square of R to the 6th. There is no physical justification for R to the 12th.
Lennard-Jones used it, because it makes the math of some things you want to do with it easy, because it's the
square of R to the 6th. So if you like R or the 10th, R to the 14th, R to the 16th, go ahead.

People always take the Lennard-Jones potential, because it's there. And like I said, the R to the 6th, I grant you
that. Maybe you should keep that. That is a true Van der Waals interaction, but the R to the 12th, there is no
reason that it should be R to the 12th. OK? Anything, sometimes you actually want steeper potentials, so you
make it like R to the 20 or something or whatever.

OK. The other thing is that people use the Lennard-Jones potentials to attract atoms together that has nothing to
do with Van der Waals interaction, to actually look at things that almost have some covalent interaction. And
then there's actually no reason to keep the R of the 6th. OK? Because the R to the 6th is really only physically
justifiable for Van der Waals terms. OK.

The interesting thing about Lennard-Jones, it's actually the simplest potential, because it only has two
parameters. There's essentially A and B, or if you renormalize the potential, there's an energy scale, and there's
a length scale. So you see, if you write it in this form, you see that the potential is in units of epsilon, and the
length, or the sigma which is the distance-- I'm sorry, the R which is the distance is in units of sigma. OK? So
what that means is that there's essentially only one Lennard-Jones system in the world.

You will see tabulated Lennard-Jones parameters for a lot of materials, but if you think of it, the energy scale of
your potential sets the temperature scale of the system. And the length scale sets the volume or therefore the
pressure scale. So if you take one Lennard-Jones system at a given temperature and pressure, that will always be
the same as a Lennard-Jones system without the parameters but at another temperature and pressure. So
there's a unique transformation going between all Lennard-Jones systems. Yes, sir.

AUDIENCE: [INAUDIBLE]

PROFESSOR: No. Sometimes, people leave out that factor of 2. I'm sorry?

AUDIENCE: [INAUDIBLE]

PROFESSOR: I'm not sure. I think the reason the factor 2 is there, if you differentiate it, and that way you find the minimum is
exactly at sigma. OK? Because if you differentiate the 12, you get a factor of 12. If you differentiate the 6, you
get a 6.

You could leave 2 out, but then sigma is not the value where the potential is minimum. That's the reason people
put sigma there, because I think-- I may be wrong-- but I think in this form, this is sigma. OK? And I actually think
that this is epsilon, but I should verify that.



So there is essentially only one Lennard-Jones. Ah, there's Lennard-Jones. I forgot his picture. I think it's sir now,
Sir Lennard-Jones, I think. OK.

Usually, two parameters is just not enough in a potential, and the reason is that usually you want to mimic at
least three properties of a material. Its length scale which is its largest parameter, its energy scale which you can
think of as its cohesive energy which is the potential depth, but you also want to get its elasticity right. OK? And
so that's three fundamental properties to get right, because its elasticity tells you its response to any
perturbations. And the problem is that a Lennard-Jones potential only has two parameters. You cannot fit three
things with two parameters.

So most people will go to things with three parameters, usually, so they can get these three things right. And one
classic is a Morse potential which has D which sets the energy scale, R0 which sets the length scale, and alpha
which sets the elasticity scale. Because you can see alpha sets in some sense the curvature of the potential. It's
what you multiply with the distance differential. OK? So alpha will be a measure of the elastic behavior.

In particular, in oxides, the form that's most popular is what's called a Born-Mayor or a Buckingham potential
which is essentially a decaying exponential, a Van der Waals term, and then the second order term in Van der
Waals perturbation theory which is the R of the 8th parameter. The weird thing about this potential that you have
to be somewhat careful about is that it diverges at short distances if you plot it. If you plot the exponential, that
goes to a finite value of A when R is 0.

So the exponential to something like this, and this is A-- it's actually a lot steeper in reality. Typically, A is very
large, but these terms, these R to the 6th and the R to the 8th-- 1 over R to the 6th and 1 over R to the 8th
diverge and R goes to 0. So they, on the other hand, look like this, where this goes to minus infinity. So when you
add the two up, you get something like this. I'm sorry. This is supposed to go down.

So if you look only up to here, this potential looks fine. But if you go past it, if you in some sense go into the core,
the potential diverges, and you may think that's silly. You never go there, but you sometimes do because of
numerical issues.

Sometimes, what happens in say a simulation is that, when you start-- let's say you do something molecular
dynamics which is essentially evolving atoms according to their force. You may start in a configuration very far
from equilibrium. So in the initial steps, atoms move with tremendous force, and so because of that, they can
literally just overshoot and shoot into each other.

And what you see is that actually the state with two atoms on top of each other is a highly bonded state in this
kind of potential. So you will never escape it. You were really just put atoms on top of each other. And trust me, if
you work with Born-Mayer potentials, and you're not careful, you will see that. You will see atoms sitting on top of
each other, exactly because of this problem.

OK. I got some Morse potential parameters out of a book. It's probably rather useless. Nobody would use this
anymore for metals to be honest, because I'll show you a bit later why. These pair potentials are not very good
for metals. Yes.

AUDIENCE: [INAUDIBLE]



PROFESSOR: You're asking about how to calculate.

AUDIENCE: [INAUDIBLE]

PROFESSOR: Let me come to that. That's a question I will specifically address, but thank you. I wanted to show you the
difference between a few potentials for a specific bond. This is the CH bond in methane, and so they're all fitted
to have the same bonding energy and the same modulus. So the same bond distance, the same bonding energy,
and same modulus, and this is the exact curve in the solid line.

The dash dash dotted is the Morse potential. That's actually the one that's very close to the exact line. Let's see if
I get this right. This is just a harmonic potential.

So this is something like what they call P2. This is sort of K times delta R-squared, where delta R is the distance
away from the equilibrium bound in geometry, and P4 is a 4th order polynomial. So that would be K plus let's say
L delta R cubed to the 4th power.

And I think the interesting thing is that near the minimum they all look the same. They pretty much have to.
They have the same position in the minimum, and they have the same curvature. OK?

So if you're only going to be looking at very short displacements around the equilibrium, actually just your
quadratic is fine, and you'll see that often. People who model small deformations in organic systems in polymers
and so will often just use spring models, essentially a harmonic potential. So to decide what potential you need,
you should think about how far you want to go away from equilibrium.

If you go very far away from equilibrium, obviously, this Morse potential does a fine job. If you stay very close to
equilibrium, you may not want to put in that effort. It's much easier to work with a spring model than to actually
work with a Morse potential. It's much faster to evaluate a quadratic.

I always thought I should put a section in my lectures on how to fit potentials, and every time, I look up papers,
and I can never find anything systematic. So I think the rule is you fit to anything you can get your hands on. And
as we'll point out later more carefully, since potentials only have a limited region of applicability, you want to fit
as close as possible to the things you're going to calculate, to the environment you're going to calculate, but so in
theory, that could be anything. There's the obvious candidates.

You always want to get the length scale and the energy scale pretty much right and the stiffness, here sort of
obvious. In some cases, you want to get low symmetry environment right. So if you only fit to crystal structures,
you may have very poor reproduction of low symmetry things, like surface energies or what goes on in a liquid.
And so in some cases, people explicitly fit to that.

I wouldn't worry too much about this. This is going to become a lot clearer, as I talk to you about the physics
that's missing in pair potentials and how you correct to that. OK. So I tried to find what I thought is maybe the
first example of computational modeling with potentials. It's probably not the first, but I think maybe one of the
first that was done on computer.

This was done by Vineyard's group, and it's essentially studying radiation damage in copper. This is from 1960. I
don't know if you remember punch cards for computers. I think this is from before punch cards.



But they managed to program a small molecular dynamics, and essentially what they're doing is they have a
crystal of copper, and they're shooting-- I think they're shooting some ions in it to actually see the orbit that the
radiation damage falls. So you knock out atoms, and you show the displacement. Ironically, this is a simulation
people still do these days. Molecular dynamics on radiation damage, so 1960. OK.

So let me talk a little about the obvious problems with pair potentials, and this is one of the things that we're
going to then show you in the lab. We are actually going to make you demonstrate this in the lab, and once you
understand the physical limitations of pair potential, you'll see that the solutions which is pair functional methods
or cluster potential are actually quite obvious why they came about. And when I talk about failures of pair
potentials, I don't talk about failures of the parameters. I talk about failures of the form, and there's a lot of
people who say, well, if this doesn't work, I just need to change my parameters in my potential. There are certain
things that you can never get right with pair potentials, because they are in violation of the particular form which
is a pairwise interaction.

So one is, obviously, that pair potentials count bonds. That's what you should keep in mind. They really
essentially sum-- the cohesive energy on an atom is largely determined by how many things are around it,
because it literally sums bonds around it. It doesn't care much about the organization of atoms.

So if you take this triangle, let's say these bonds are one Angstrom, or I take this chain, where the bonds are one
Angstrom. OK? Here, I have four atoms, here I have three, but there are three bonds in each case. These have
essentially the same energy in a pair potential model. OK?

The only thing that would distinguish them is longer range interactions, but that's not the physics that in many
cases makes this different. OK? The physics that in many cases makes this different, for example, could be
angular or bonding or could be that the presence of this truly influences the bond between these two. And we'll
actually show you how to solve both problems. They're actually different problems that lead to different solutions.

Another nice example, if you take a ethylene molecule, let's say you were trying to model that with pair
potentials. If I flap these bonds here, so I bend open the hydrogens, that really doesn't cost me any energy, if I
have a pair potential. OK? Because the pair potential just measures this distance and this distance. So if I just
flap this open, that distance stays the same. OK? Only if you had some indirect interaction between these
hydrogens would you pick up that energy difference.

But you see, if you made a potential between the hydrogens, you'd be putting the wrong physics in. Because the
reason that energy changes, as I change that band, has nothing to do with the interaction between the
hydrogens. But it has all to do with the hybridization of the carbon, that the carbon is sp2 hybridized and one
certain bond angles. OK? So it's not because you can fix it with pair potentials that you fix it right.

OK. The other thing you will see is, if you use pair potentials, and you look say for low energy crystal structures,
you will almost always end up in close-packed systems. And the reason is that in pair potential models, atoms try
to maximize their coordination, because really you sum the energy pairwise coming from atoms around you. So if
you have a negative bonding energy with atoms around you, you try to get as many as you can around you, so
you will maximize coordination.



The ground states of most potential models for elements are HCP Hexagonal Close-Packed and FCC Face-
Centered Close-Packed. OK? So it's extremely hard to stabilize things like a diamond cubic structure which is an
open structure. I don't know if you have a picture for it.

The other thing which is maybe more obvious, but pair potentials are not stable against shear, and now you could
argue most materials aren't stable against shear. But if I take the square of atoms-- let's say this is just a piece of
a lattice. OK-- if I shear this, I can shear this and keep all these distances the same.

So in a nearest neighbor pair potential, all the energy has not changed. So if the energy has not changed, that
means that my elastic constant in shear is 0. OK? Now, you could say, this is why real materials on form square
lattices and simple cubic lattice, and that's actually true. But a real material has some amount of resistance
against shear, even in a square configuration. And here you see by construction, it doesn't have any resistance.
OK.

What I'm going to do is try to break down what in different materials classes, like metals or organic solids, what
the failures of pair potentials, and then we'll go into what the remedies are for that. So in metals, the main thing
is this problem. That if you do a pair potential model, and you look at the bonding energy of this red atom, it's
really essentially six times the single bond energy of the red with the white one. And so that's why for pair
potentials, people say that cohesive energy scales with Z which is the coordination number.

And if you do quantum mechanics or even more approximate theory but that have the essentials of hybridization
in them, you find that actually for metals-- and with metals, I mean things that have covalent delocalized
bonding, which you call metallic bonding-- the cohesive energy of an atom goes like the square root of Z. OK? So
it's not linear in Z at all. So if you have more bonds, you start gaining less and less incrementally, and you can
see that.

I made a picture here. This is out of a, I think, what's really a great article, if you want to read more about this.
It's a review article on the embedded atom method. We'll put this on the restricted side of the course website.

This is actually for nickel, the cohesive energy per atom as a function of the coordination it's in. So of course, 12
here, this is the FCC solid. 2 is the dimer. So this is just two atoms in the gas phase, and what do you think is 11?
How do you get 11?

This is actually experimental data. 11 is from the vacancy formation energy. If you make a vacancy in a crystal,
the atoms around it are 11-fold coordinated instead of 12. In FCC, you have 12-fold coordination, but if you take
an atom away, those atoms around there have 11-fold coordination. So this comes from the vacancy
coordination.

Now, there's three points here. They drew a square root through them. You probably could draw other things, but
what we do know from quantum mechanics is that essentially the first order is square root of Z behavior and now
Z behavior. You can also see that in silicon. This is a slightly confusing graph, but this is the energy per bond in
red for silicon in different coordinations. OK?



So what you see is that the energy per bond actually goes down as you make more bonds. So even though as
you coordinate an atom with more atoms around it, the total cohesive energy may go down. If you divide that
energy by the number of bonds, that number becomes smaller and smaller. OK? It's almost like an atom in a
covalent bonding has only so much bonding power to give, and if it only bonds to one atom, it gives all its
bonding power to that one atom. If it has to bond to a lot, it has to divide that between all those.

So this is an important concept to remember, that in covalent materials, cohesive energy is not linear in
coordination. Bonding strength gets weaker, as you add more bonds, and we'll come back to that. This is
important when you go between-- when you make potentials in one coordination environment and start using
them in another one.

Here's a quantum mechanical result for aluminum. So this is the cohesive energy, again, as a function of the
coordination number. So this is actually a calculation, and again what you see is that, even though as you
coordinate more the cohesive energy goes down, but it doesn't go down linear. If you want to think of it, the
increment you're getting from adding a bond starts getting smaller and smaller.

If you go from one to two, you could say this is your bonding energy. This is the extra energy you get. If you go
from 11 to 12, all you gain is this. So the bond energy, when you go from the 11 to 12 is much smaller than the
bonding energy when you go from 1 to 2. OK? So the cohesive energy with coordination is a convex function.
That's important to keep in mind.

And of course, you cannot get that with pair potentials. With pair potentials, this will essentially look linear. Now,
what's the slope of it in pair potentials? It's a trick question. What's the slope of that line?

Well, Z's the coordinate, so I need the factor in front. See, the problem is you don't know. This is in the end the
fundamental problem. It depends on where you fit it.

If you fit from 11 to 12-- if you fit from 11 to 12, then this is your slope. Then, you're going to have this curve. If
you fit from 1 to 2, you're going to have this curve. And do you see that they really give substantial error when
you go away from the coordination in which you fit?

I'm going to show you that with the last result. This is basically saying the same thing. What I took here, this is
out of Anders Karlsson's paper which is on our reference list, which we've put on the web. This is a great review
paper on potentials, and not just pair potentials. And we give with every main topic-- not every lecture-- with
every main topic, we have a list of references, and they just go on the Additional Materials on the Stellar website.

This is the pair potential for copper fitted to different properties. The lowest one is the one fitted to the dimer, to
the molecule. So this is just a copper-copper dimer. You see, it's the strongest of them all. It's the strongest of all
the potentials, and why, because there's only one bond. OK? You remember, all the bonding energy goes in that
one bond.

The equation of state, that's essentially looking at the cohesive energy of the solid as a function of lattice
parameter. So this one, that's almost the smallest one. That's the solid. See, a lot smaller, because you're
counting now bond strength in coordination 12, where every bond is weaker. So you try to map that onto a pair
potential, and you get, in some sense, a much weaker interaction per pair.



And what Anders Karlsson did, he also extracted it from phonons. This is actually one. It's really small and from
defects, and the defect one even has a different minimum. Actually, they all have a different minimum.

So what this is telling you, what I'm trying to demonstrate, is that for metals and for anything that's actually
covalent, but this is worse for covalent delocalized, your potential is extremely environment-dependent. It's
essentially coordination-dependent. OK? And we show you in the next lecture how that shows up in certain
physical properties and then how you solve that. Because turns out, there's a very elegant solution to the
problem, and I think you can already see where we're going to take this.

The problem is that our bonding energy is linear in coordination with a pair potential. So all we need to do to fix
this problem is to make it nonlinear, and that leads you into what are called pair functionals, rather than pair
potentials. And things like there's a whole class of methods, things like the embedded atom method, glue
models, effective medium theory, they all go be different names, are essentially pair functional models.

There are still things that count the coordination around you in some form or another. It's just that they make the
energy evolve nonlinear with that coordination, and they're very elegant methods. They're still empirical
methods, but very elegant methods that solve the essential problem of pair potentials without a lot of extra
work, and so we'll talk about that on Thursday.

So I'll end here. I'll be happy, if there are questions, I'd be happy to take questions. Professor Marzari and I will be
here for a few more minutes, if there's anybody that has questions about how the course will run in general.


