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--for all our applications and for the lab sessions. I guess I keep using Albert Einstein. This is the 100th
anniversary of his sort of famous year, 1905, so just a little celebration.

One slide of a reminder of what we have seen in the previous lecture, we have really developed the formalism
leading to the Hartree-Fock equations. And the Hartree-Fock equation follow from a set of very simple and very
beautiful path. We have the Schrodinger equation, and we have reformulated the Schrodinger equation in terms
of the variational principle.

So we have a functional. And we know that we can throw into that functional any arbitrary wave function, and it'll
give us an expectation value of the energy. And sort of the closer we get to the true ground state wave function,
the lower that energy is going to be.

We are never going to go below the ground state energy. And so it's sort of a very powerful approach to try out
sorts of possibilities and solution. And in particular, sort of Hartree and Fock took this approach.

They wrote sort of the most general many-body wave function that can be written as a product of single particle
orbitals. That was actually the original Hartree solution. Wave functions written as data do not satisfy a
fundamental symmetry of interacting fermions. That is they are not anti-symmetric.

And so what you do? You take this product of single particle orbitals, and you sum it with all the possible
permutation, with all the possible signs in front, so that the overall wave function is anti-symmetric. And that can
be sort of written compactly as what is called as later determinant here.

And basically, now our unknowns are the n orbitals phi. And so we need to determine the shape of this n single
particle orbitals. And we want to determine them such that they minimize the expectation value of the variational
principle.

And so that leads basically to a set of differential equation is just functional analysis. And when you ask yourself
what are the conditions that those single particle orbitals need to satisfy in order to minimize the variational
principle, well, this is it, the Hartree-Fock equation. So each single particle orbital phi of lambda need to satisfy
basically a Schrodinger-like equation.

Again, as always, there is a kinetic energy term here. There is the interaction with the external potential that is
just the potential of the nuclei. And then come the so-called mean field terms.

So the electron lambda here will interact with each and every other electron mu via an electrostatic interaction.
You see phi star times phi is the charge density coming from the orbital mu. And the field that the electron
lambda fills is the electrostatic average density.

And in these, we sum over all the electrons including the electron lambda. So up to now, we have a system that
is self-interacting. An electron lambda fills the electrostatic interaction with itself. That, in principle, is not correct.

But luckily, this next term that is called the exchange term cancels that exactly. And the exchange term is the
direct consequence of having written the trial wave function not just as a product of a single particle orbital,
because up to now we would have sort of something closer to the Hartree equation, but written as a proper anti-
symmetric wave function, summing on all the permutation with them appropriate signs.



And so, basically, we have Schrodinger-like equation. A great advantage with respect to the Hartree equation is
now the operator doesn't change depending on the index lambda because this sums if you want to go over all
the electrons including lambda. So our only constraint here is that we need to find the n lowest Eigen state of this
single differential equation.

So if we have n electrons, if you want, it's not that we have n different differential equation, like it was the case of
the Hartree equation. But we have an identical differential equation that is written here. And we need to find the
n lowest energy states. And those will be our single-particle orbitals.

In all of this, we have started from a variational principle. So it's very easy to go beyond the Hartree-Fock. We
can say, in large r variational cluster, we can add more Slater determinants with sort of different coefficients.

We can try to construct a more complex wave function. And that solution will become better and better. Or we
can sort of use the perturbation theory. And so quantum chemistry has developed a number of techniques that
are post-Hartree-Fock techniques that become systematically more and more accurate. They are also more and
more expensive. And that's if you want, the main limitation of that direction.

What we'll see today is something, as they say in Monty Python, completely different. And that will be sort of
density functional theory. That's, if you want a theory that starts from a very different set of hypotheses, the net
result will be, again, a set of single-particle equations.

The concept are very similar actually, formally, to the Hartree-Fock equation, but they have been derived in a
completely different spirit. Density functional theory tends to be less expensive than Hartree-Fock and, overall,
tends to be more accurate. Especially for solid, it's much more accurate. You'll see when we discuss case studies
the Hartree-Fock solution for, say, interacting electron gas or in general for metals tends to make them
semiconducting or insulating-like.

So Hartree-Fock then works very poorly for solids. And that's why, if you want density functional theory, comes
from the solid state community, while Hartree-Fock that tends to work very well for atoms comes from the
quantum chemistry community. And all the theory was developed by Walter Kohn, and coworkers. So you'll see
the Hohenberg and Kohn theorem, the Kohn [INAUDIBLE] mapping during the '60s.

But I would say it's only during the '70s that people started to be able to actually solve interesting cases using
density functional theory. And it's really the beginning of the '80s-- you'll see some cases here today-- in which
people started calculating something that had sort of a direct application. So we'll see the phrase diagram of
silicon as a function of pressure or volume and sort of the first principle prediction of properties of solids.

Walter Kohn, for the development of this eventual theory, got the Nobel Prize for chemistry in 1998 together with
John Pople. That has been the person that's been fundamental in the development of Hartree-Fock and post-
Hartree-Fock approaches in quantum chemistry. OK. So let's see sort of what is the general idea behind density
functional theory.

And in many ways, we'll sort of start from ideas that had been developed at the end of the '20s and the
beginning of the '30s, what is nowadays called the Thomas-Fermi approach. And again, the basic idea here is
that the wave function of a many-body interacting problem is an object that is too complex to treat. And it would
be very, very nice if we could instead try to deal with a simple object.



And sort of one of the choices could be the charge density. So if you want, Thomas and Fermi independently were
asking themselves, well, could we try to solve not really a Schrodinger equation in the many-body wave function,
but solve something else in which our only unknown is the charge density? If you think for a moment, the charge
density is one of the sort of fundamental variables in the description of our interacting electron problem.

And so this was the question. Can we do something just with the charge density? And so what they did is writing
out what we would call a heuristic function. That is trying to devise a set of terms that would give us the energy
of a set of electrons in a potential just as a functional of their charge density.

And so, by now, you could sort of think that some of the relevant terms will be electron-electron interactions,
electron interaction. And we could write a sort of electrostatic term, like the Hartree term in the Hartree or
Hartree-Fock equation, that is just a functional of the charge density. So this is sort of fairly easy.

It's also very easy to sort of imagine what could be the interaction of the electrons with an external potential
through the charge density. It will be just the integral of that external potential times the charge density. What
becomes really critical is finding a functional that will give us the quantum kinetic energy.

If you think, in the Schrodinger equation, the quantum kinetic energy is really the second derivative of the wave
function. And obtaining from a charge density only some insight into what could be the second derivative of the
wave function is very complex. If you think for a moment at the extreme case of a plane wave, OK, so a sine and
cosine sort of in space, if you remember, the charge density given by a plane wave is a constant.

We just multiply the imaginary exponential times its complex conjugate. That gives us a constant. So all plane
waves lead to a constant, but obviously the quantum kinetic energy of a plane wave depends on the wavelength
of that plane wave because the second derivative is what counts.

So what I'm trying to say is that, when we look at this as a possible wave function, a function, say, of r and the
charge density that comes from this is going to be a constant, this wave function times this complex conjugate.
But the kinetic energy of this object is going to be minus 1/2 k square-- sorry, plus 1/2 k square.

And so there is really not a good way for this extreme case to correlate its charge density to its kinetic energy.
It's an ill-defined problem. And this is really the difficulty.

So there isn't really a good way if you wanted to extract the information on the second derivative from just the
charge density. Now, [INAUDIBLE] sort of this objection, they tried to find a reasonable functional, so without sort
of trying to get the exact solution, but try to find a reasonable function that would give us a good estimate to the
quantum kinetic energy starting from the charge density.

And the solution to this problem that is something very important is what we could call a local density
approximation. So the problem here is that we have a non-homogeneous charge density everywhere in space.
And we try to figure out what could be the quantum kinetic energy of this non-homogeneous problem.

And the approximation that Thomas and Fermi did was, well, dividing this non-homogeneous problem in a set of
infinitesimal volume in space. So it's a bit difficult to draw, but suppose you have the charge density coming from
some atom or some molecule. This is a non-homogeneous charge density distribution.



Now, what you do is you divide this in space and set a very small infinitesimal, if you want, volume. And inside
each volume, the charge density can be approximated as a constant. And what Thomas and Fermi said is, well,
the contribution coming from this infinitesimal volume, say, the first one to the overall quantum kinetic energy
will be given by that volume times the kinetic energy density of the homogeneous electron gas at that density.

So if, again, we partition all space, we could have that the density in this little cube is 0.5. Here is 0.6. Here is
0.7. Outside, it goes to 0.

But we can actually calculate in some other way what would be the quantum kinetic energy of a homogeneous
electron gas. That's a problem that we can solve if the homogeneous electron gas is not interacting.

And we can solve it numerically even if it is interacting. So we can know what is the quantum kinetic energy of a
homogeneous gas with density 0.5, density 0.6, density 0.7. And so we can also know what would be the
quantum kinetic energy per unit of volume of data.

And so we'll say that this non-homogeneous system in blue will have an overall quantum kinetic energy that is
given really by the integral across space-- and it's written here-- of the quantum kinetic energy of the
homogeneous electron gas integrated over space. And, say, for the non-interacting electron gas, it's actually
very easy to do. So if you have a non-interacting electron gas at a density rho, its quantum kinetic energy is just
the rho to the 2/3 that then integrated times the unit volume gives us rho to the 5/3.

So by integrating this quantity, we would get an approximation. This approximation is basically exact in the limit
of our homogeneous system, obviously. And it will be sort of quite good in the limit of our non-homogeneous
system that has a very slowly changing charge density.

The more, if you want, inhomogeneous your system becomes, the less accurate this approximation is. And of
course, something like an atom or a molecule is a very inhomogeneous system. You go with a charge density
that goes from 0 to very high volumes close to the core of the nuclei.

So this is basically the overall answer for the overall expression that Thomas and Fermi postulated for the energy
of an inhomogeneous system. They were saying, well, suppose that we have a system that has a certain
distribution of charge rho. Without trying to solve the Schrodinger equation finding out the wave function and
sort of go through that the very complex many-body route, we can actually sort of postulate that the energy
could be written, again, as an electrostatic energy. You see sort of each infinitesimal volume interacting with
each other infinitesimal volume times via 1 over R electrostatic interaction.

Then we have got an external potential. Again, it's usually the Coulombic field of the nuclei. And so the
interaction between the electron and that external potential is just trivial given by rho times v.

And the difficult term, the quantum kinetic energy, has been calculated with a local density approximation. And
this is the term that's not going to be very good, again, because it's very difficult to figure out what could be the
curvature of our wave function just from the density that that wave function produces.

But anyhow, this is a very simple expression to deal with. So for any external potential v, we can try to find out
the rho that minimizes this expression. And this will be our Thomas-Fermi solution.



There are obviously a number of problems. I'll show you in a moment an example of what the Thomas-Fermi
solution would give to an atom. First of all, I mean, there is really no theoretical basis to this. It's what we call a
heuristic derivation.

Thomas and Fermi just wrote out what could be a reasonable energy functional, and then tried to sort of see what
results it would give. But there hasn't been any kind of formal derivation of that functional. It's not like the
Hartree-Fock equation that sort of derive just with some analysis from the variational principle.

Another problem is that, again, it doesn't really sort of introduce the concept of anti-symmetry that fermions
need to have, the fact that the many-body wave function needs to be anti-symmetric upon exchange. But you
know, there is no conceptual problem in adding an exchange energy to the previous functional. Using the same
concept, the same idea of local density approximation, suppose that we want to add an exchange term.

Well, we could look at what is the exchange energy coming from the Hartree-Fock equation, say, for a
homogeneous electron gas. And that gives us rho to the 1/3 term. And that's basically the exchange energy
density.

And so for an inhomogeneous system, we are going to sort of approximate its overall exchange energy just by
taking the integral of that energy density that is 1/3 times the sort of local value of the charge density. And so we
have a rho to the 4/3. And so, again, it's a local density approximation.

The great consequence of having this energy functional that depends only on r is that it is absolutely inexpensive
from the computational point of view. The only variable that we need to be concerned with is just the a scalar as
a function of three coordinates. That is the density as a function of rho.

And it's what we call a linear scaling system. If you double the size of your system, the computational complexity
just becomes double. So it has a lot of very good things, but it's got a fundamental defect. Because of that
approximation in the kinetic energy, it actually does a very poor job in describing a non-homogeneous system.

So it would work reasonably well for something like a metal. Suppose that you want to describe sodium, or
suppose you want to describe aluminum. Those are system in which the valence electron produce a charge
density that is very homogeneous.

So a Thomas-Fermi approach could actually work well. And it's actually been used even very recently sort of
quite successfully to describe problems like the surfaces of lithium, the surfaces of aluminum. What happens,
say, when these simple metals melt? What happens to the sort of formation of defects in aluminum?

So there are a number of successes. But sort of clear example of what goes wrong is, say, if we study an
inhomogeneous systems like the argon atom. And again, if we think at the charge density of the argon atom as a
function, say, of the radial distance from the center from the nucleus, well, it will look something like this.

We have first 1s, and then we have the 2s, and the 2p shells. This is somewhat a poor depiction of that charge
density. If we try to solve the argon atom with a Thomas-Fermi approach, all these sort of fine structure of the
core shells in the atoms is completely washed out.



OK. So it gives you a reasonable approximation and sort of an appropriate decay of the charge density as we
move far away, but a lot of those details have completely disappeared. And for this reason really the Thomas-
Fermi approach wasn't developed beyond the '30s apart from some of these recent applications for the very
specific case of solids that have a very homogeneous charge density.

The reason why we describe it here is that because, in many ways, it's the grandfather of the ideas that were
developed in the '60s in density functional theory and, in particular, the idea that for a moment that we should
focus not on the wave function, but on the charge density of the system as the key ingredient.

The great difference between the Thomas-Fermi approach and density functional theory is that density functional
theory actually is a theory. It starts with some theorems that are proven. And then it shows what are the form of
the equations that, say, a charge density need to satisfy in order to solve exactly the problem.

So in many way, density functional theory is, in principle at least, an exact theory. It's sort of writes out what are
the equation that the charge density needs to satisfy. And those are absolutely equivalent to a Schrodinger
equation for the wave function.

There are some difficulties. And this is what we are going to sort of go into right now. But let me first give you the
conceptual framework of density functional theory and how it was derived. And as usual, we start from the
Schrodinger equation. OK. So we start from the idea that, in quantum mechanics, for any given external
potential, you have a well-defined differential equation. OK. It's sort of very complex. It describes a many-body
wave function. So in most practical cases, we might not be able to solve it, but everything is well-defined.

You have an external potential. You have the differential equation that the many-body wave function needs to
satisfy. And so, in principle, you have the solution. And so in that sense, sort of the first statement here is
summarized.

For a given external potential and knowing how many electrons are going to fill this potential, our quantum
problem is formally completely defined. In principle, the solution exists unique. We might not be able to calculate
it, but it exists. And once we know the many-body wave function, that solution, we know everything about our
quantum system.

OK. So this is, if you want, the trivial part of the conclusion. That is, given an external potential, we find, by the
Schrodinger equation, the wave function. The wave function determine all the properties of our system and, in
particular, determine the ground state charge density.

So there is a unique pathway that starts from the external potential and leads us to the charge density, the
ground state charge density. Once you have defined the potential, you, in principle, have uniquely defined what
is the ground state's charge density of your system. And so in that sense, we say that the ground state charge
density, the ground state energy, and all the properties of our system are, in some complex way, a functional of
our external potential and the number of electrons.



Functional, again, can be anything. And in this case, it goes through the Schrodinger equation, nothing sort of
complex at this point. The sort of remarkable result that no one had sort of figured out between 1964 and 1965
is that the opposite is also true and is not trivial at all. So what Hohenberg and Kohn stated first, actually, in
1964, was this, that the ground state charge density is a fundamental quantity, as fundamental as the external
potential.

And in particular, not only the external potential, the terms uniquely the ground state's charge density of your
system, but also the vice versa is true. That is, given a ground state charge density, in principle, one can prove
that there is a unique external potential for which that ground state's charge density is the ground state solution
for that external potential.

So if you have the external potential, conceptually it's trivial to go through the Schrodinger equation and its
solution to the charge density. What Hohenberg and Kohn are telling us-- and I'll just show you a sketch of the
proof in a moment-- is that in principle, if someone is giving you a chance density and is telling you this charge
density is the ground state's charge density of a number of electrons and electrons in an external potential, in
principle, what is that external potential is an information that is completely contained into the charged density.

And it's not contained in a trivial way. It's not that you can look at the ground state charge density and guess
what the external potentially is. And that's where all the complexity of practical densely functional theory comes.

But from the conceptual and mathematical point of view, these two quantities are absolutely equivalent. From
one, you get the other and vice versa. And this sort of vice versa was not trivial. And that is sort of what is
contained in the so-called first Hohenberg and Kohn problem.

I won't go through the derivation. It's actually very simple. I've printed it here in case you sort of want to read it.

But it's basically is a derivation ad absurdum. What they are saying there is that, if that external potential were
not unique, if there were two external potential that were different and would give the same ground state
energy, we would get to absurdum. So typical mathematical demonstration, we suppose that there are two
different external potential that give the same ground states as density and we show that we arrive to a
conclusion that doesn't make sense.

So there can be only a single external potential. And that's the proof. And again, it wasn't trivial.

I mean, if you want, this is a very basic statement. But it took 40 years to be formulated. And it's actually not true
in other cases that to first glance look very similar.

Suppose that for a moment we want to discuss excited states. You could say, well, if I have a charge density and
I say this is the charge density of an excited electronic state, maybe I could also recover the potential that has
generated there. And that's not true, actually.

So there are sort of a number of cases in which this is not true. But for this fundamental sort of relation between
the charge density of the ground state and the external potential, this is true. So we have sort of moved away
now our attention.



It's not any more the many-body wave function that we want to focus, but is the charge density. The charge
density is as much a fundamental variable of our problem. It's not a derived variable. It's not something that
comes from the wave function, but is something that we can actually focus all our attention into.

And now, we need to find the equivalent of the Schrodinger equation for the charged density. This is what
Schrodinger had done in the '20s, in 1925. He said, this is the equation that quantum objects satisfy. And I'll call
it the Schrodinger equation.

Now, Hohenberg and Kohn has shown that we don't need to think in terms of the wave function. We can think in
terms of the charge density as being the fundamental descriptor of our quantum system. What is left?

They need to show me that there is an equivalent of the Schrodinger equation. That is we can write a density
equation that is sort of what will give me the ground state and sort of all the properties of the system. And that's
really the second Hohenberg and Kohn theorem.

That is really writing out the equivalent concept of the Schrodinger equation for the charge density. And now,
sort of, it becomes fairly conceptual. OK. So this is the procedure.

And all of this in the next few slides is still a conceptual procedure. It will describe objects that are well-defined in
principle, that are conceptually well-defined, but we still don't have a clue on what they look like in practice. And
all the sort of density functional application goes through a procedure that we'll see later on that is the sort of
[INAUDIBLE] mapping that gives a hint of what these objects look like.

But up to now, we are going to introduce objects that are well-defined in principle, but we don't know how they
look like. And so that's why somehow density functional theory is a much less intuitive theory than something like
Hartree-Fock. OK. So this is going towards the second Hohenberg and Kohn theorem, defining the fundamental
equation for the charge density. And this is the step.

For any charge density rho, so someone gives you, someone draws you, an arbitrary charge density. Well, we
know that there is an external potential of which that charge density is the ground state. We don't know what it
is, honestly, but we have proven that there is a unique external potential.

OK. So because there is a unique external potential, there is a many-body Schrodinger equation with that
potential in there. And there is a wave function that is going to be the ground state wave function of that many-
body Schrodinger equation. So given a certain rho, we know that an external potential exists.

And it's unique. It determines a Schrodinger equation. And that Schrodinger equation determines our ground
state wave function that we call psi.

So what we are saying is that, given a rho, in principle that psi, the ground state wave function of the Schrodinger
equation in the external potential that is uniquely defined by the rho, is also a well-defined object. Again, we
don't know what it is, but it is well-defined. And because it's a well-defined object, we can calculate the
expectation value of that well-defined object of the quantum kinetic energy minus 1/2 sum over all i of the
second derivatives and the electron-electron interaction, just the 1 over ri minus rj term.



So again, this term is, in principle, well-defined. And we call this term the universal density functional. That is for
any given arbitrary rho, i, in principle, can define a number that is this number here. I have the rho. In principle,
from the rho, I have the external potential. From the external potential, I have the Schrodinger equation.

In principle, I'm able to solve that Schrodinger equation found in principle the many-body ground state wave
function. That will be psi. And I can calculate the expectation value of psi of the quantum kinetic energy and of
the electron-electron interaction term, all well-defined.

We have really no clue on how to calculate because we can't really do in practice any of the steps, but this
universal function of the density is well-defined. So with this universal functional that is now well-defined, we can
write out something. We can write to an energy for any given external potential and for any given charge
density. And we write it as this.

So for any given charge density, there will be a well-defined number that is this universal density functional of
beta rho prime. And then we add another term that is just trivially the integral of this v, this external potential,
times the charge density rho prime. So again, this new expression that we written is well-defined. For any rho
prime and for any external potential, we can calculate trivially this term. And in principle, we know what this
number is.

And this is, if you want, 1964, 1965, the reformulation of quantum mechanics. Because, now, Hohenberg and
Kohn are able to prove that there is a variational principle. That is, for this expression written here, for this
functional of rho prime, we can prove that for any rho prime that we can throw in the overall numerical value of
this expression is always going to be either greater or equal to the ground state energy that we would obtain
from the Schrodinger equation in the presence of this external potential.

So now, we have a well-defined density functional. So if you have an external potential, the z over r of your atom,
you can try out now not wave functions that are very difficult, but you can try out charge density. And the
charged density that gives you the lowest expectation value, the lowest value for this functional, will be the
ground state, the charge density.

Small problem, we have no clue what this looks like as a function of rho prime. But if we knew, we would have a
wonderfully simple approach to quantum mechanics. Now, we don't need to deal with the many-body complexity.
We just minimize this expression as a function of rho prime.

And again, it's sort of fairly easy to prove this variational principle. But one needs probably to sit-- I've given you
some reading. So you're welcome, if you are really interested in this, to go back and read the first Hohenberg and
Kohn theorem and read the second Hohenberg and Kohn theorem.

But in many ways, the proof of this second Hohenberg and Kohn theorem can be done again through the
variational principle. That is, if we have a certain rho prime, well, that, again, uniquely determines the ground
state wave function. Rho prime will determine an external potential that, in principle, is different from this. But
rho prime will determine an external potential and will determine our wave function that is the solution of the
many-body Schrodinger equation.



And if we take the expectation value of our Hamiltonian with this external potential in this, but evaluated on the
wave function of c prime that comes from this charge density rho prime, well, we can show that this expectation
value here is just identical to functional that I have just written. And for the variational principle, then it needs to
be greater or equal than E0.

I won't sort of dwell into that. And again, you can look at the sort of detailed description and in sort of some of
the many references that I've given or that I've also posted on the website. But what is conceptually important is
that we have a new equation. OK. So 1964, '65, quantum mechanics turned around. We don't have to think at
many-body wave functions. We can think just at charge density.

And all would be well apart from this detail, that we don't know what that functional f of rho is. And so we have a
conceptual approach, but we don't have a practical approach to solve the density functional reformulation of
quantum mechanics. And this is, if you wanted, true to this day.

We don't know what is the exact form of f of rho. If we knew it, sort of most of our sort of quantum mechanical
computational problems would be trivially solved. Because solving that variational principle in the charge density
would be most likely a trivial thing to do.

The issue is that not only we don't know, but we have understood a lot of what that exchange correlation-- of
what that universal density functional is. And it's very complex. So it's unlikely that there is a simple analytical
expression of it as a function of the charge density only.

But, you know, the other great piece of, if you want, quantum engineering by Walter Kohn was finding out a very
good approximation to that density functional. We don't know what the exact one is. But now, what they are
doing is, well, finding out one that is going to be very, very closely similar to the exact one.

And so they are going to throw in some physical intuition to this problem that up to now, if you want, has been a
mathematical problem. It's another layer of complexity in this discussion, so I hope I'm not losing you. But sort of
what Walter Kohn did-- I think he had a young postdoc arriving from Cambridge. Lu Sham had just done his PhD
in England and came there.

And sort of, you know, he told him, I have this new variational principle. Let's see what we can do to make it into
a practical solution. I think they were in Santa Barbara, in San Diego probably, at that time.

OK. So this is what they are going to do. Remember, sort of, what is the problem. We need to figure out what is a
reasonable approximation to this functional here.

So what they say is, well, suppose that someone has given us this charge density. So we need, in principle, to
find out what would be the many-body wave function that is solution of this external potential that corresponds
to this charge density. This is going to be very complex.

Let's invent a problem in which electrons do not interact between each other. OK. So electrons-- so that's the sort
of main problem in the Schrodinger equation, that electrons interacting with each other introduce the two-body
electrostatic repulsion in the Schrodinger equation. And that's what makes it difficult.



Well, what Kohn and Sham say is let's for a moment suppose that there is a system of electrons that don't
interact. So the only thing that those so-called Kohn and Sham electrons fill is the external potential. OK. So those
Kohn and Sham electrons will solve, will satisfy, a Schrodinger equation that is much simpler.

Because there is no electron-electron interaction. Those Kohn and Sham electron, the only thing that they fill is a
new potential. And they will have their own quantum kinetic energy.

So what they are saying is, for any given charge density rho, there is going to be a non-interacting set of
electrons who's ground state charge density is identical to rho. So we have said, if we have a charge density rho,
you can all go through, find out the external potential that comes from rho, the Schrodinger equation, the many-
body interacting electrons solution.

But now, what we are going to say is we can also think at a system of non-interacting electrons. And we want
those non-interacting electrons to fill a potential that is such that their ground state is going to give us a charge
density that is identical to the charge density I'm dealing with. OK. And we call that external potential the Kohn-
Sham potential. OK. So now, for a charge density, you don't only have to think at all the complexity that I've
discussed up to now.

But you have also to think that, for a charge density, there is going to be this set of Kohn and Sham known
interacting electrons. And there is going to be a potential that is called the Kohn and Sham potential that is such
that the ground state of the Schrodinger equation for non-interacting electron, that is without electron-electron
interaction, in that Kohn and Sham potential will give us a wave function and a ground state that leads to a
charge density identical to the charge density I'm sort of dealing with.

OK. What do we do with this? Well, at this stage, there is a sort of great simplification that, for the Schrodinger
equation of non-interacting electron, we actually know what is the exact solution. So it's actually very simple to
solve a Schrodinger equation in which the electrons do not interact. Because, now, this later determinant is
actually the exact solution.

So if you have a set of non-interacting electrons, you don't have the electron-electron term in that Schrodinger
equation, this later determinant is not only a good approximation, but it's actually the exact solution. So for this
non-interactive set of electrons, we can solve everything exactly. And in particular, we can calculate, say, what is
the kinetic energy of this set of non-interacting electrons.

OK. So now, we can sort of have a somehow pseudo-physical way of decompose this mysterious density
functional into different terms. So what we are actually doing via the Kohn and Sham mapping is extracting from
here terms that are very large and that we know how to write, we know how to calculate.

And then, hopefully, once we have extracted all these terms that we know how to define, we remain with
something that is very small and that we'll find another numerical approximation for it. So Kohn and Sham say,
well, we have this well-defined density functional. We extract two terms that are well-defined.

And these two terms that's sort of the great achievement actually contain most of the physics of our problem.
And the sort of small term that is left over, we are going to approximate in some simple way. And actually, the
approximation that they found worked very well. And that's why some of this functional theory became a
practical theory.



And so in this sort of density functional, the first physical large term that they extract is the quantum kinetic
energy that we call Ts not of the real system. Because, again, even if it's well-defined, we don't know how to do
that. But what they were able to write is the quantum kinetic energy of this non-interacting problem.

So for a given charge density, there is this set of Kohn and Sham non-interacting electrons that lives in a
potential, such that they have the same ground state charge density. And their kinetic energy is trivial because
it's going to be just the kinetic energy of this later determinant, just the sum of a single particle term.

So for a charged density now, there is a well-defined quantum kinetic energy that is not the true quantum kinetic
energy of the system, but is the quantum kinetic energy of this sort of associated system of non-interacting
electrons. But this term is now well-defined. They say, well, let's extract another term that is well-defined that is
just a Hartree electrostatic energy of a charge density distribution.

OK. So if we look at the charge density distribution in which each infinitesimal volume interacts with each other
infinitesimal volume with an electrostatic interaction, that's going to be the term. And you know, what we are left
is now something that they call the exchange correlation term. That is everything else.

OK. So F, in principle, is an exact quantity. We are now able to define our quantum kinetic energy term. That is
an exact quantity, but is not really the quantum kinetic energy of the true system.

But we sort of say, you know, this is going to be equal to a well-defined term plus another well-defined term plus
a third term that we don't know. So we have sort of decomposed a quantity that we have no clue what it is into
three terms of which two terms are well-defined. And all our cluelessness is contained in the third term. And we
call this third term the exchange correlation, but the sort of physical advantage of having done this is that it
turns out that these two terms capture a lot of the complexity of your problem. And this term tends to be fairly
small.

OK. So that's all, actually. That's why it works very well because somehow they manage to capture the
complexity of our system. And so once that exchange correlation term is defined and it's approximated in some
way that we'll see in a moment, our problem is now well-defined because we really have a variational principle.

Remember, the universal density functional plus the external potential plus the charge density in the field of the
external potential minimizes the sort of new variational principle that comes from the Hohenberg and Kohn
theorem. And so we can write it, our variational principle. That is this quantity with the constraint that the
number of electrons should be equal to n should be minimum.

And as usual, when you sort of write a variational principle, you are saying that sort of the differential of that
quantity needs to be equal to 0. Or if you want, I mean, this is a generic term. You have a set of what are called
Euler-Lagrange equation, basically. That is nothing else than differential analysis.

That is you are asking yourself, what are going to be the conditions that need to be satisfied by the charge
density in order to satisfy the variational principle? There is always this sort of 1 to 1 correspondence. You have a
variational principle.

It gives you differential equation. Or you have differential equation. You can rewrite them in a variational
principle. We have seen that for the Schrodinger equation. And we see this, in particular, now explicitly for the
Kohn and Sham orbital.



So I'll actually go directly to the explicit expression of the Kohn and Sham orbitals. Again, remember that what we
have done is we have defined a variational principle that acts on a universal density functional F plus the charge
density and the external potential. And we have decomposed, we have extracted, from this universal functional
sort of terms that are large and physical.

And we have sort of pushed all the many-body complexity of the problem in something that we call the exchange
correlation functional. That is, again, a functional of the charge density. We don't know yet what that function of
the charge density is. But luckily, it's going to be small. So in a moment, we'll approximate it.

And then we ask ourselves, what are the differential equations that derive from this variational principle? Well, in
principle, I had written them here. OK. We just need to take the variation with respect to the charge density and
imposing the Lagrange multiplication constraint.

And so this would be basically that the charge density needs to satisfy this set of equation, the sort of functional
derivative of this non-interacting quantum kinetic energy plus a number of terms that really contain the external
potential, the Hartree interaction. And the exchange correlation need to be equal to the Lagrange multiplier that
fixes the number of electrons. We are not able to calculate this functional derivative because, remember, the
quantum kinetic energy of the non-interacting system is again written as a later determinant.

And so there is sort of, you know, this type of back in which, even if we had written everything in terms of a
charge density, we are not able to explicitly calculate not only the derivative of the true interacting electron's
kinetic energy with respect to rho, but we are not even able to calculate the functional derivative of the non-
interacting kinetic energy with respect to rho.

But what we are able is actually to calculate the derivative of that non-interacting kinetic energy with respect to
the orbitals that describe the Kohn and Sham electrons. Remember that these non-independent Kohn and Sham
electrons have an exact solution that is a later determinant.

And so we know there are trivial many-body wave function is a later determinant composed by a single particle
orbitals. And the functional derivative of that independent non-interacting electron's kinetic energy with respect
to the single-particle orbital is now trivial and is just minus 1/2 del square. So at the end of all these sort of
complex formulation, what we are left with is something very simple and probably something you should focus
your attention from now on.

We have now a set of Kohn and Sham equation that are the differential equation that the electrons need to
satisfy in order to satisfy the variational principle with the caveat that, in this Kohn and Sham equation, there is
at term, an exchange correlation term, that we still don't know what it is. It's sort the formally defined as the
functional derivative of the exchange correlation energy with respect to the charge density. But we'll need to
approximate somewhere.

And what this equation describes is not anymore the true electrons in your system, but they describe this cousins
of the true electrons. They describe this Kohn and Sham non-interacting electrons that have their own orbital psi
i. And that will give us a ground state charge density that, if the exchange correlation functional was exact,
would be not only this, as obviously the same ground state energy of our interacting electron system, but it
would be the exact solution of the problem.



OK. So this equation look a lot like a Schrodinger equation. They look a lot, if you want, like the Hartree-Fock
equation that we've written before. Because what we are seeing is that the a Kohn and Sham electron i fills a
quantum kinetic energy operator, fills a Hartree operator, fills the external potential, and then fills this sort of
remaining term that is the exchange correlation potential.

Again, if we knew what were this exact exchange correlation potential, we would have an exact solution to the
problem. But we know a very good approximation. And then if you want finding the ground state, it's not very
different from finding the ground state of the Hartree-Fock equation with the caveat that actually this term here
is going to be much simpler than the exchange term of the Hartree-Fock equation.

If you go back to the first slide to the Hartree-Fock equation, the last term is that numerically very complex
expression in which we sort of take the orbital, and we put it inside an integral differential operator. Now, it's
become simpler. And that's all if you want. So the Kohn and Sham equation look very similar.

In practice, they are simpler to solve. They tend to be more accurate in most cases. And that's, at the end, what
leads to the success.

But what is critical for all of this is having a reasonable approximation to the exchange correlation potential. If we
had the exact exchange correlation potential, everything would be exact in this formulation. We would find the
Kohn and Sham independent electrons that were sort of the ground state electrons for that charge density that is
ultimately equal to the charge density of the interacting electrons in this external potential.

OK. And we have the Euler-Lagrange or Kohn and Sham differential equation in the previous page. I written here
sort of, you know, just for reference also what would be the total energy of the system. And usually, if you had an
independent electron, the total energy of the system is trivially the sum of each of the single particle energies.

OK. If you have 10 electrons and they don't interact with each other, you can calculate what is the energy of
each of these 10 electrons. Sum all of them, and that's the total energy of the system. In this case, it's more
complex.

And the total energy of the system can't be really written as that, but it's got other terms that depend on the
charge density. That's sort of this is, in summary, what your total energy is. And again, there's nothing else than
kinetic energy term sort of a Hartree term functional charge density, this exchange correlation functional, and
the interaction between the external potential and the charge density.

But this is actually different from the sum of the eigenvalues. That would be the sum of the expectation values of
psi i calculated on the single-particle orbital where T is, again, just the simple quantum kinetic energy. And the
VKS is this Kohn and Sham potential.

So if you want to calculate the total energy of your system, even if it's made of independent electron, you can't
sum just a single particle orbitals. But you have to sort of deal with this expression. Nothing complex in this, it's
just sort of a caveat that is relevant when you want to sort of-- you know, this is the reason why we can't really
find out the equivalent of the [INAUDIBLE] theorems for Hartree-Fock.



This is why at the end these single-particle energies are ultimately not physically meaningful. They sort of don't
give us the total energy of the system just by taking the sum over all of them. OK. So in order to make this into a
practical algorithm, the only part that remains is finding an approximation to that exchange correlation term, to
that last term.

Remember, we had sort of defined this density functional. We have been able to extract two meaningful terms,
the Hartree electrostatic energy and the non-interacting Kohn and Sham kinetic energy. And we have said what
is left is a function of the charge density that we call the exchange correlation functional.

How we are going to approximate that? Well, we go back to the Thomas-Fermi idea. We are going to do a local
density approximation to that exchange correlation functional.

So again, what we want to calculate is the exchange correlation energy for any arbitrary charge density.
Sometimes I call the charge density n. Sometimes I call the charge density rho, but they are always the same.

So how do we do this? Well, we don't have the full solution. But what we can say, again, is that, for an
inhomogeneous charge density that changes values and then drops to 0, I can calculate the exchange
correlation energy for this charge density distribution by sort of decomposing it in infinitesimal volumes. Inside
each infinitesimal volume, I can say the charge density is constant.

And you see, I make a local density approximation. That is I say the contribution to the overall exchange
correlation energy of this inhomogeneous system can be broken down. And each infinitesimal volume will give its
own contribution to the total exchange correlation density.

You know, in principle, it's not correct. I mean, our problem doesn't have to be local in any way. Actually, as
people say, this exchange correlation functional, the true one, although we don't know what it is, we know that is
ultra non-local. So it can't be decomposed into terms that independently sum up.

So in principle, we can't do this. But in practice, it tends to be a good approximation for a lot of cases. And so
what is going to be the contribution to the exchange correlation energy from this infinitesimal volume?

Let's say the charge density there is 0.5. Well, what we need to do is we need to find out what is the exchange
correlation energy for the homogeneous electron gas that is at this density. That's something that, with some
advanced computational techniques, we can actually find out almost exactly.

So we would know, if we had a homogeneous charge density 0.5 everywhere, what would be the charge density
per unit volume. And we can find out what is the exchange correlation charge density per unit volume not only
for 0.5, 0.6, 0.7, anything. And what we are saying is that, in this non-homogeneous problem, we construct the
overall exchange correlation energy by summing up these different pieces.

And so this is what Ceperley and Alder did in 1980. They basically found out what was the almost exact sort of
closely to numerical exact solution for the homogeneous electron gas. That is for a system in which you have
only electrons homogeneously, so the charge density is identical everywhere. And those electrons interact.



So you can calculate the energy of this interacting electron problem exactly as a function of the density. OK. So
you change the density in your sort of volume, and you find out what is this energy. And then you can calculate,
for any of this density, what is the Kohn and Sham quantum kinetic energy. You can find out what is the Hartree
electrostatic energy.

And so you can also find out, for this specific case of the homogeneous gas, numerically what would be the
exchange correlation density. And so that's basically a function. So for the homogeneous gas, that is for the case
in which n doesn't depend on r, people found out what was basically this exchange correlation energy.

It was calculated as a function. This is a function of what people call rs. rs is the radius of a sphere that contains
one electron. So it's a sort of inverse quantity with respect to the density.

So numerical calculation, what are called quantum Monte Carlo calculation, really solved the interacting
Schrodinger equation problem. But for the specific case of an electron gas that has a homogeneous density, they
were able to do that for various density. And so, now, we have a function for the homogeneous problem.

For the non-homogeneous problem, we take a local density approximation, and we say that the overall exchange
correlation energy is given by the integral over all the infinitesimal volume. And each infinitesimal volume will
have a certain density and will contribute with its own density. If the density is going to be equal to here, this will
be the value of the contribution of that infinitesimal volume.

If the density somewhere else corresponds to this, this will be the corresponding. So we really match up this
overall exchange correlation term from all the little infinitesimal volume exactly as Thomas-Fermi had done, but
now we do it for a term that is a much smaller term in our problem. Thomas and Fermi had done it for the
quantum kinetic energy.

Instead, what Kohn and Sham do, they do it for what is left from the universal functional once you have taken out
the electrostatic and once you have taken out the quantum kinetic energy of the non-interacting electrons. At
this point, if you want 1980 and even before without the computation, with some sort of analytical
approximations to this curve, density functional theory becomes not only a theory, but also a practical algorithm.

We have a set of expression for the exchange correlation term. And so, now, it's just a matter of trying to find out
what the solution to these problems are. And because somehow conceptually we start from the homogeneous
electron gas, it turns out that this approach worked especially well for solids.

I mean, the valence electrons in a solid are much less structured than the electrons in a molecule that they need
to drop to 0. So the charge density in a solid overall varies less dramatically as a function of space than the
electron density in atoms and molecules. And these are actually sort of what were summarized the numerical
result of Ceperley and Alder.

So they had calculated this exchange correlation energy as a function of the density. And that was actually a
computational curve, a set of dots. And this is often cited, again, per Perdew and Zunger in a sort of paper of
theirs, among other things sort of suggested the analytical interpolation of all the numerical data. And so you see
it's something somehow exotic.

But while it's defined, this is just not even a functional. It's just a function of the charge density. So it's something
that is very simple to calculate in practice.



And so at this point, density functional theory, is a well-defined theory. So you see 1980, Ceperley and Alder do
this quantum Monte Carlo calculation, find out sort of what is this exchange correlation energy. Perdew and
Zunger write out a simple interpolation.

1982, sort of the first time that I think we see sort of where all of this is going, Marvin Cohen in Berkeley sort of
has been working for two or three years. Alex Zunger was there. [INAUDIBLE] him, a number of his students, they
have been able to actually write out all the electronic structure codes that are able to solve the density functional
equation for the case of a periodic solid.

And so they address the case of silicon, sort of the most important material in electronics. And so what they do is
they are able now to calculate the energy of that system as a function of the atomic position and, in particular, as
a function of the lattice parameter. So you know, first thing that they do is they take silicon in its diamond
structure, so the FCC lattice with two atoms as a basis. And they calculate that energy as a function of the lattice
parameter.

And it looks something like this. And then obviously, as you have learned by now, you look at what is the
minimum of that energy. And that is the theoretical prediction of the lattice parameter. And there is [INAUDIBLE],
you know, 1% error. They look at the second derivative.

This curvature here is really the bulk models of your problem, again, 5% 10% error. And then they say, well, let's
suppose that we have silicon not in the diamond phase, but let's suppose that we have silicon in the beta tin
phase. And so this is also experimentally known.

And we know in the beta tin what is the lattice parameter of silicon. And we know from the Maxwell construction
what is the pressure at which we would have a transition from, say, diamond to beta tin. And again, you know, I
can't remember what was the error, but it's substantially correct.

And they were able to actually sort of calculate the sort of complex zoology of all the high pressure phases of
silicon. And it was in remarkable agreement with the experiment. So 1982, this is [INAUDIBLE] and Cohen. But in
particular, Marvin Cohen in Berkeley showed that for a-- Marvin Cohen.

For a realistic case, density functional theory is able really to give us quantity of prediction. Marvin Cohen has
actually become, this year, the president of the American Physical Society. OK. So this is really the beginning of
density functional theory as a practical approach.

And in many ways, what has happened between 1982 and today is that we have become better and better at
solving the algorithm for this, overall, still complex computational problem. And you see a lot of this in the next
lecture that follows. And we have become somewhat better, not really dramatically better, in calculating that
exchange correlation energy.

In a way, sort of the ideas of Kohn and Sham from 1965 of having a local density approximation is still very good.
I mean, it's not used nowadays any more that much, but it's as close as-- what we can do now is not really that
much better. And as you can imagine, sort of what people have done that was a bit better was introducing
gradients in your problem.



So you're trying to guess what the energy of an inhomogeneous system comes starting from what you know
about the homogeneous electron gas. Well, maybe you should somehow throw in into your problem also the first
derivative of the gradient of the density. And so people did that fairly soon in the early '80s. And sort of using the
gradients was actually much worse.

There was a miracle in the local density approximation in which the actual expression of the local density
approximation satisfies a lot of symmetry properties and scaling properties of what would be the exact exchange
correlation functional. At the time, people put in gradients. All these sort of symmetries and scaling properties
were sort of thrown to the dogs. And actually the GGAs-- sorry, the gradient approximation, were working much,
much worse.

And so people need to realize, sort of in the late '80s, the work of Axel Becke, of John Perdew especially, a lot of
it, you sort of need to introduce gradients in ways that still satisfy a lot of these analytical forms. And in many
ways, by now, there is a sort of generalized exchange correlation functional that's been sort of developed in the
mid-'90s by Perdew, Kieron Burke now at Rutgers, and Matthias Ernzerhof. That is called the PBE functional.

That has become sort of the workhorse. So a lot of the time, you'll see sort of density functional calculation done
in the PBE, GGA approximation. But again, these are important improvements, but if you want just sort of very
little on top of the local density approximation of the [INAUDIBLE].

The chemistry community has also sort of done a number of very intriguing developments. In particular, there
are things that the Hartree-Fock does very well. In particular, because you have the sort of exchange term in
Hartree-Fock, you cancel, remember, the self-interaction say, in the single-electron problem coming from the
Hartree, the electrostatic problem.

Density functional theory, in theory, in its exact formulation, would be self-interaction corrected. But in practice,
it is not. If you solve the hydrogen atom with density functional theory, you have that the electron interacts with
the charge density created by the same, by the electron itself.

And so what sort of the quantum chemistry community has done is, well, they said let's take LDAs, let's actually
take GGAs that seem to work very well. But let's actually construct an exchange correlation functional that has a
little bit of this, but it's got also a little bit of what we know worthwhile in the Hartree-Fock equation. So they
construct hybrid functional which there are sort of pure density financial terms and the sort of Hartree-Fock
exchange term mixed in.

It makes the equation much more complex. And if you want, it's a sort of less pure formulation of density
functional theory, but it can work reasonably well or very well especially, again, for atoms and molecules. And
this is where we are, basically, with exchange correlation functional.

I think I'll stop here for today because that's actually a lot of work. What we'll start seeing in the next class is how
we actually solve this equation in practice. On March 8th, you're going to your second lab in which you will
actually study the energy of a solid using density functional theory.

What I said today is probably the last of the conceptual lectures. And I understand that some of it is very
complex. There is reading material posted on the Stella website. There is the Kohanoff-Gidopoulos paper on
density functional theory.



And some of the readings that I've given are very useful. The two best books that are also cited at the end of this
lecture are probably the one by [INAUDIBLE] or the one by [INAUDIBLE]. And they are both called Density
Functional Theory or Density Functional Theory In Practice. And they are cited on the last page. Otherwise, this is
it for today and see you next week.


