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PROFESSOR: I think you will get going. A lot of people are not here, but I think if the MRS meeting

were going on across the river I would be there too if I didn't have a class to go to.

We had last time finished a discussion strain. And we introduced strain by defining it

as a displacement, each component of a vector displacement U as being given by a

set of coefficients, eij times x of j, which says that the displacement in a deformed

body varies linearly with the position of the particular point in the body.

We could also express the same thing in terms of change of length. The change in

the vector U would be given by-- we show the same set of coefficients-- eij times

delta x of j. So whether you want the displacement vector or you want the fractional

change of length, you get this by an expression of the same sort.

We saw though that unless we define the coefficients correctly we could have a

situation where a body is not only deformed but is rotated as well. And we saw that

in general unless we define these coefficients carefully we would include in this

tensor a component of pure rotation, rigid body rotation. And this would not

measure deformation.

However, regardless of its suitability or unsuitability, the positional vector is a vector.

It transforms like a vector. The displacement U is a vector, and it will transform like a

vector; ergo, the 3 by 3 array eij is a second-rank tensor and we'll transform like a

tensor.

We showed though that we could take eij and get rid of the pure rotation that might

be contained in those coefficients by writing it as a tensor epsilon ij plus another

tensor omega ij. And that was a new wrinkle, the concept of adding two tensors

together to get a third tensor. We did run into that before.

And we define the elements of the two tensors epsilon and omega; epsilon ij was

given by one half of eij plus eji, and omega ij is given by one half of omega ij. And

notice the order of the subscripts here in this difference. That is a matter of
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definition, but it defines which term is omega ij and which is omega ji minus omega

ji. I'm sorry. This should be eij minus eji.

And we showed that at a tensor of this form which would have all of the diagonal

terms zero and the off-diagonal terms equal to the negative of one another that a

tensor of this form does indeed correspond to pure body rotation.

We showed that by looking at a point at the end of a positional vector U and looked

at a displacement which would be exactly at right angles to it. And the U would be

given by the tensor relation. We showed that U dot r is identically zero when the

displacement vector is given by this tensor with diagonal term zero and the off-

diagonal terms equal to the negative of one another.

So we have then from a general tensor of the form eij constructed in the terms

epsilon ij something that is a measure of true deformation. It is a symmetric tensor

by definition. And therefore in addition to all of the other properties of second-rank

tensor, namely having a law of transformation and staying symmetric for any

arbitrary change of coordinate systems, the radius normal property also works.

Hence, the representation surface that we construct from the tensor epsilon ij xi xj

equals 1, gives us the strain quadric. And it has the property that the radius gives us

the value of strain in a given direction. And the value of the radius literally is going to

be the vector that's on the left hand side, the magnitude of U times the component

of U that is parallel to the radial vector per unit radial vector. And this then is the

tensile strain, the fractional change of length as we look in this direction.

The radius normal is going to give us the direction of the total displacement U. And

the value of the property in that direction is going to be the product of that

displacement with a unit vector in the direction of interest. And therefore that is the

tensile strain as we said before from the general properties of the quadric.

So everything we said about second-rank tensor and in particular symmetric tensor

holds for the strain tensor. We can talk about diagonalizing the strain tensor into a

form epsilon 1, 1, epsilon 22, zero zero, epsilon 33. And I'll remind you that we know
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how to do this to set up the normal equations and solve for the eigenvalues and

then look for the principal axes of a tensor.

There are special forms of the strain tensor. Something that 1 diagonal goes into

this form is called plane strain. And I love the melodic nature of that, the plane

strain. If this were strain induced by a Modernistic transformation, we could call it

the Bain plane strain. If we diagonalized it, it would be the main Bain plane strains.

And if that deformation took place in an aircraft window, we could call it the plane-

pane main Bain strains. And we could continue on indefinitely, but I think you're

finding this tiresome.

Another form of the strain tensor that doesn't look what it actually represents is

epsilon 1 zero minus epsilon 1 zero zero zero zero. That looks peculiar, very

special. But, again, this is analogous to what we found for stress. If we rotate this

tensor 45 degrees, we would find that treat tensor was diagonally, had all the

diagonal elements zero. And we would have the epsilon 11 prime-- let's just call it

epsilon prime-- and this epsilon prime zero zero zero. And this is pure shear

Something that we'll show shortly, and in fact I left it to you as a problem on a

problems set. The sum of the diagonal elements, epsilon 11 plus epsilon 22 plus

epsilon 33 is something that's defined as the trace of the tensor. And for the strain

tensor, the trace turns out to be equal to delta V over the fractional change in

volume. And we'll show that in just a little bit as well.

So a characteristic of pure shear is that it does not result in any change of volume of

the solid. There's deformation, but the volume stays exactly the same.

Let me then proceed to show that the trace of the strain tensor is indeed the change

in volume. And want I'll do is to look at an element of volume that is oriented along

the principal elements of strain. So if this as x1, this is x2, and this is x3, the strain

tensor I'll assume is oriented. So we have a term epsilon 11 zero zero zero zero;

epsilon 22 zero zero zero; epsilon 33.

So let's suppose that the solid originally has edges L1, L2, and L3 along x1, x2, and
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x3, respectively. So the initial volume before any deformation will be simply L1 times

L2 times L3.

Let's suppose now we impose the strain, and the volume then we'll increase to

some value of V plus delta V. And the length L1 will change to a value L1 times 1

plus epsilon 11. That is to say it'll be L1 plus epsilon 11 times L1, which can be

factored out in this fashion. L2 changes to L2 times 1 plus epsilon 22. And L3

changes to L3 plus epsilon 33 times L3, which I'll write in this fashion.

So expanding this product, it'll be L1, L2, L3. And then if I simply multiply out these

terms, I'll have 1, and then I'll have epsilon 11 plus epsilon 22 plus epsilon 11 times

epsilon 22. And this will be times 1 plus epsilon 33.

And if I carry out that multiplication, that will be 1 plus-- and I'll get exactly these

terms again-- epsilon 11 plus epsilon 22 plus epsilon 11 times epsilon 22. And then

a term epsilon 33 plus epsilon 11 epsilon 33 plus epsilon 22 times epsilon 33. And

then a third-order term, epsilon 11 times epsilon 22 times epsilon 33.

Now having gone through the painful process of expanding that, I will proceed to

say that the epsilons are always going to be very small. Elastic strains are typically

on the order of 10 to the minus 6. So a product of two of those strains is 10 to the

minus 12. And a product of three of those terms is going to be on the order of 10 to

the minus 18.

So this last term is going to be minuscule. And now I use a higher order term

intentionally rather than a higher rank term. This is really a term of higher order.

The same is true of all the peer-wise projects of this [INAUDIBLE].

So I now have left if I turn out these higher order terms to pasture, I'll have 1 plus

epsilon 11 plus epsilon 22 plus epsilon 33. And the rest is negligible. And this will be

the original volume V times 1 plus epsilon 11 plus epsilon 22 plus epsilon 33.

So delta V over V, if I subtract off V on the left, delta V over V then is simply going to

be equal to epsilon 11 plus epsilon 22 plus epsilon 33. So this is indeed the

fractional change of volume, and it's the trace of epsilon ij.
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Now, physically, you wouldn't expect the volume to change if I change my reference

axes because that's a scalar quantity. So I've shown by a hand-waving, backdoor

argument that in fact the trace of a tensor does stay invariant for at least this

particular tensor. But it's fairly straightforward to show that for any tensor aij the

trace of the tensor is invariant when you change the coordinate system. And that's

not hard to do. If you're clever, it takes about three lines. So I'll invite you to the

exhilaration of discovering that for yourself on a problem set.

Any questions or comments? All right. Having defined strain as a symmetric second-

rank tensor when we factor out rigid body rotation, we can view strain as a physical

property.

And I think I tried to hoodwink you last time by saying this is a property of material.

So therefore strain tensor has to also conform to all of the symmetry restrains that

we have derived very exhaustively. And you said, no, no, no, no, that can't be; I

don't believe that I can only give a uniform uniaxial deformation to an orthorhombic

crystal.

And I say, yeah, but to get the deformation, you have to squeeze the crystal. And

that is going to be linked to the deformation by the elastic constants, and they are

physical properties. And that maybe makes you think a little bit. But actually even

though operationally you impose a strain by imposing a stress or by doing

something else to the crystal that results in a strain, you can nevertheless pick any

stimulus you wish to achieve a desired state of strain.

So there is no symmetry constraint on the form of the strain tensor that can result.

So the stain tensor then is not a property tensor. It is also a field tensor just like

stress. So it can have any form we choose to create in it.

So we now have the potential of having stress as a field tensor. And we have strain

as a field tensor. And within limits, we can create strains of these two field tensors of

any form that we wish. And we can now regard these as things that we do to

crystals and look at a whole range of properties that result when the generalized
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force is not a vector, a tensor of first rank, but the generalized force is a-- let's say--

a stress tensor. It's a generalized force which itself is not a first rank tensor. It's a

second rank tensor. So we'll see a whole collection of interesting properties that fall

into this category.

But first I'd like to look at one remaining second-rank tensor property, and that is

thermal expansion. And this is a curious second-rank tensor property, and we

couldn't discuss it until we had talked about strain. And let me introduce it by one-

dimensional example.

Let's suppose we have a rodlike specimen of length L. And let's suppose it is in

equilibrium at some temperature T. And then we heat it up to some temperature T

plus delta T.

In response to that particular change in temperature, the length of the rod will

increase to a length L plus delta L. It expands. And we would find experimentally

that delta L, first of all, is proportional to L. If you make the rod twice as long, the

amount of expansion in an absolute sense is twice as large.

And secondly, provided you're well above very, very low temperatures, close to

absolute zero, delta L will also be proportional to the change in temperature.

Thermal expansion is one of those properties which thermodynamically must go to

zero as temperature goes to zero. So the thermal expansion coefficient that we've

yet to define will be a function of temperature as we get down to very low

temperatures on the order of a few degrees Kelvin.

So we can define then the linear thermal expansion coefficient for this rod as 1 over

L, delta L over delta T. So this is something that will give us the fractional change of

lengths. And what we can do now in general is to say that if we create a general

strain, not a tensile strain, we have a general strain epsilon 11 plus epsilon 12,

epsilon 13, and so on, has to be symmetric. So epsilon 21 is equal to epsilon 12.

We'll say that this tensor epsilon ij will be written in general for the three-dimensional

case as a second-rank tensor aij times a scalar quantity delta T.
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The strain is the field tensor. That's the response. The stimulus that creates this

response is an incremental change in temperature. But as this is a second-rank

tensor and this is a scalar, an array of coefficients in which we multiply every

element of a tensor by a scalar is also a tensor.

So this is called the linear thermal expansion coefficient tensor. And it is a

symmetric tensor by definition since a measure of true strain is by definition a

symmetric tensor. So this is the linear thermal expansion coefficient tensor.

AUDIENCE: Quick question.

PROFESSOR: Yes.

AUDIENCE: [INAUDIBLE] the temperature gradient [INAUDIBLE] and talk about the directionality

say between here and here because of the temperature [INAUDIBLE]?

PROFESSOR: Oh, yeah. Sure. Sure if you wanted to do that. That assumes that the thermal

conductivity would be very small so that the temperature inside the body would not

attempt to [INAUDIBLE]. Yeah. Yeah. In the same way that you could create strains

that are in homogeneous as well.

We'll now for the first time start talking not in terms of abstractions but in terms of

some real physical properties. What is the range of linear thermal expansion

coefficient tensors? And unlike many physical properties, that's an easy one to

answer, 10 to the minus 6 degree C per degree C.

Materials have a very, very small range linear thermal expansion coefficients. And

let me give you some examples for real materials. They go up to maybe 10 to the

minus 5 for a very soft weakly bonded materials. But the for metals-- and I'm giving

you a single number now because these are averages for polycrystalline materials--

the value of A times 10 to the 6.

For lead, a low- melting metal, is 28, 2.8 times 10 to the minus 5. For copper, 18.

For iron, 12. Four tungsten, a very refractory metal, 5. And for diamond, a very
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strongly bonded materials, it's 0.89 times 10 minus 6.

If we look at compounds, again, the average linear thermal expansion coefficient

times 10 to the 6 for polycrystalline material. For aluminum bromide, hardly a

technology material of commerce, but in light of this because this has one of the

largest linear thermal expansion coefficients of any material, very weakly bonded to

compound.

For a more typical ionic compound, NaCL, 40 times 10 to the minus 6. For calcium

fluoride, this has a bivalent cation in it, so the material is stronger, more strongly

bonded, 20. For MgO, both a divalent cation and the divalent anion, as you would

expect, the thermal expansion coefficient drop still more.

For Al2O3, a trivalent cation that goes down to 8.8, and that's really an average

because this is a hexagonal material. And a second-rank property tensor for a

hexagonal crystal has to have two equal diagonal elements and one independent

diagonal element when you diagonalize the tensor.

Spinal, MgAl2O4 this is representative of all of the ferrites for example, 7.6. Silicon

carbide, a very refractory covalent compound, 4.7.

For glasses, here's a surprise. You might think that a glass might have about the

same linear expansion coefficient as the crystalline form of the same composition.

But a sodium calcium silicon oxide glass, so called soda-lime silicate glass, is 9,

fairly low. A borosilicate glass, like the Vicor that we love to make glass apparatus

out of, 4.5. And one of the near record holder is fused silica, silicio glass, and here a

measly value of 0.5.

So glasses have very low linear thermal expansion coefficients compared to

crystallize materials that are predominantly ionic. And the reason lies in the nature

of the structure. Something like MgO has ordered ions, and when you heat it up, it

expands isotropically.

A glass is this random network of edge-shared polyhedra. So when you heat it up,

yes, the dimensions of the polyhedra increase in proportion to the change of
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temperature. But the framework because it's so meandering and open can buckle to

accommodate the increased size of the tetrahedra that are in the linkage. So the

result is the network buckles, but the overall microscopic thermal expansion is very,

very slight even though the tetrahedra are changing dimensions in the same degree

that they are in these crystalline inorganic nonmetallic materials.

Let me give you a handout not that it's up to date, but there was a very nice,

convenient one-page article in the Journal of the American Ceramic Society a

number of years ago that lists thermal expansion coefficients for low expansion

oxides. So let me pass that around and let you take off for copy with that.

And that gives some examples of the value of this property for, again, for

polycrystalline materials, which if you looked at a single crystal would show

anisotropy. And here you'll find a few materials in the list near the top they're

arranged in order of increasing linear thermal expansion, you'll find some that are

just about zero when you have a polycrystalline form of the material. And you'll have

some that have this very unusual behavior where the linear thermal expansion

coefficient is actually negative. So let me pass this around for reference.

Now this may seem to be a curiosity that you can fine for a polycrystalline material

for which the individual grains expand anisotropically a bulk linear thermal

expansion coefficient of zero. Why should one care other than that being a curious

result? Can anybody guess?

AUDIENCE: Can you say that again?

PROFESSOR: That these are materials which in a polycrystalline form with random grain

orientation have a linear thermal expansion coefficient this is essentially zero?

AUDIENCE: [INAUDIBLE]?

PROFESSOR: Yes. Exactly. The materials out of which you build furnace linings and tanks for

melting glass or smelting steel have to be made out of polycrystalline materials. You

can't have a monolithic single crystal that's large enough to melt a significant

amount of glass in for example.
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And being polycrystalline, when the material expands, there is a great deal of stress

between neighboring grains because they're randomly oriented. If the bulk

microscopic thermal expansion coefficient is zero, that is going to be refractory that

is very, very resistant to thermal shock. When you heat it up, you don't find

intergranular cracking. So the materials that have essentially zero spatially average

thermal expansion coefficients are very attractive for refractories.

You can pick up any issue of the Journal of the American Ceramics-- not the

journal, but the Bulletin of the American Ceramic Society and you will find refractory

companies hustling materials like Cordierite, which is a silicate material that on

average has one positive thermal expansion coefficient, one negative thermal

expansion coefficient. And the volume change of the individual grains is essentially

zero. So that makes a dandy material for refractories.

Cordierite has another interesting property that is a really nice example of

anisotropy of a physical property. If I ask you to rattle off some properties which you

know to be very anisotropic, one of them that you wouldn't think of is color. Your t-

shirt is pink, so how can that be a function of direction? Well your t-shirt is not a

single crystal.

And their single crystals which if you hold them up to light and pass through a plain

polarized beam of light the crystal has a very different color for one direction of

polarization then another. And these colors, interestingly, very often are strikingly

different. They're crystals that are green in light polarized in one direction and red

for light polarized in the opposite direction.

And there is in the old Icelandic sagas-- few people have heard of them. The

Icelandic sagas which were written in about the year 500 are one of the early forms

of Western literature that is really great, enduring world-class literature. In the

sagas, there's one episode where Thor is sleeping and Olaf comes along and steals

his sunstone. And Thor is upset he takes his battle as and cut Olaf's head in twain.

And people puzzled for hundreds of years, what is sunstone. This doesn't compute

in today's age.
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And finally a Norwegian archaeologist came up with a hypothesis that in Iceland

there are remarkably large and remarkably transparent and perfect single crystals

of Cordierite. And Cordierite is strikingly pleochroic. That's color that is a function of

direction.

And what this archaeologist theorized is that the Vikings would take a sunstone

when they went sailing on the North Sea, which is notoriously damp and overcast

and gray, and your principal means of navigation was the sun. But when the sky

was overcast, you couldn't see the sun. But the sun as it comes through the cloud

gives you light that's very strongly polarized.

So the theory is that the Vikings would have very perfect crystals of transparent

Cordierite, would hold them up to the sky, and turn them around until the Cordierite

crystal lit up a bright, golden sunny yellow. What better name for the sunstone. You

found the sun from the direction of polarization of the light scattered from the cloud

when you've got the crystal oriented just so. In a different orientation, it would look

murkier, look sort of a bluish purple for the other principal direction of the

birefringence.

So there is putting crystal anisotropy hundreds of years ago to a very useful

purpose to navigate on cloudy days. Unfortunately, the Vikings used it to sail down

the British coast and sacked the next village. So it shows you that even the most

simple of science can be put to application in war research. Anyway, won't go there

anymore. So index of refraction and color can also be a strong function of direction

The numbers that I put on the blackboard suggest that the magnitude of thermal

expansion coefficients are influenced very strongly by the strength of the interatomic

bonding. And this shows up in a very, very striking way if you group together classes

of comparable materials.

And if you plot the value of the linear thermal expansion coefficient in units of 10 to

the minus 6 per degree C as a function of the melting point in degrees Kelvin, the

numbers range from about 400 K for materials like sulfur up to about 3,700 for
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tungsten. And the variation is so beautiful it could make you cry. It goes as the

inverse of the melting point.

And way up here are materials like for sulfur and lithium. And the way out here are

materials like tungsten. And their relation is given by a equals 0.020 over the

melting point in degrees Kelvin. So very strong correlation between melting point

and linear expansion for simple elements.

If you do the same thing for compounds, you find a similar parabolic relation except

it is offset. For oxides and halides, many of them with the rock salt structure, so they

are isotropic. And again, if you plot here the melting point in degrees Kelvin, the

numbers here range up to 60 times 10 to the minus 6. And again, a variation with 1

over T, but offset from the origin. And the curve here is that a equals 0.038 over T,

the melting point T sub m in Kelvin, minus 7.0 times 10 to the minus 6.

Finally, let me finish with some data for single crystals that provide examples of and

anisotropy. These are all hexagonal materials. And I will give you the-- not all

hexagonal. I take that back. But they're all uniaxial crystals. The value of the thermal

expansion coefficient along C and the thermal expansion coefficient that is parallel

to C, so these are the elements that would be in the diagonal isothermal expansion

tensor.

So for Al2O3, which is a hexagonal rhombohedral oxide, the two expansion

coefficients are 8.39 and 9.0 times 10 to the minus 6, not terribly anisotropic. But

the structure of alumina is a close-packed arrangement of oxygen with aluminum

filling 2/3 of the available octahedral holes. So it's hexagonal only because of the

sites that are filled in the array.

For TiO2, which is [INAUDIBLE] and therefore also uniaxial, 6.8 perpendicular to C;

8.3 parallel to C. For zirconium silicate, 3.7 and 6.2, almost a 2:1 difference. For the

quartz form of silica, which is hexagonal, 14 perpendicular to C; 9 parallel to C.

For carbon, the graphite form, a layer structure-- you can almost guess how this is

going to turn out. It's going to be humongous perpendicular to the lawyers and very
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small within the plane of these tightly bonded hexagonal nets. And that is indeed the

case, 1 perpendicular to C; 27 parallel to C. So there is an anisotropy of a factor of

27.

A few more. Aluminum titanate, perpendicular to C minus 2.6; parallel to C 11.5. A

very well known example of anisotropy, extreme anisotropy, where one principal

coefficient is positive and two are negative is the calcite forms calcium carbonate,

minus 6 and 25.

For zinc metal, a hexagonal close-packed metal, surprising degree of anisotropy, 14

and 64. And for tellurium, which is a chain structure like selenium, 27 perpendicular

to C and minus 1.6 in a direction parallel to C.

Even simple hexagonal close-packed metals can do strange things at low

temperatures. For zinc, the expansion coefficients perpendicular to C and parallel to

C as a function of temperature go at 300 degrees C from 13 and 64. At 150, the

values have dropped to 8 and 65. At 60 degrees K perpendicular to C, the thermal

expansion is negative and has not dropped terribly much of at all parallel to C. So

this is a hexagonal close-packed structure lot. A lot of action and strange things

going on in the plane at the close-packed layers, but not very much change in a

direction perpendicular to the layers.

Let me raise one more issue. If we were to look at some of these strangely

anisotropic materials which had negative thermal expansion coefficients in one

direction and positive in another, what would the representation quadric look like?

Suppose we looked at calcite, for example, which has a large negative thermal

expansion coefficient. And if we look at the thermal expansion quadric when the

tensor was referred to the principal axes, parallel to C-- well, the thermal expansion

tensor aij along its principal axes would be along A1 in a direction perpendicular to

C, it would be for the data given here, minus 6, zero, zero, zero, minus 6, zero,

zero, zero. And A33 is 25. So that's very, very anisotropic.

But what is this going to be? This is going to be a quadric that has the shape of an
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hyperboloid of two sheets. So it's going to look like this. And there'll be an

asymptote like this and then asymptote like this. Along the asymptote, the radius of

the quadric is infinite. So therefore along these directions the strain is equal to zero.

Strain goes as 1 over the radius squared.

In this range of directions here, the radius is imaginary. But remember that the

strain is given by 1 over the radius squared. So this says that the strain is negative,

so the material has contracted. And finally, in this range of directions where the

radius is finite and positive, if the value of strain is 1 over radius squared, this says

that the maximum deformation is along the direction of the C axis, and it's positive.

The material expands along C; the minimum radius of the quadric corresponds to

the maximum thermal expansion.

So let me close with a question. Along the asymptote of the quadric, the strain is

zero. Does this mean that this direction in a crystal of calcite does not move, no

deformation at all when you heat it up? I see faint shakes of the head. I don't know if

that's just in awe of what's going on here or an opinion on the question. Do you

think it'll be no strain?

AUDIENCE: It would be [INAUDIBLE].

PROFESSOR: Good answer. Let's remember a property of the representation quadric. The

direction of what happens is normal to the surface of the quadric. The thing that is

happening here is the displacement; ui is given by epsilon ij times U sub j. So when

we look in this direction, the displacement, which would be normal to the surface of

the quadric, gives us this as a displacement.

So along the asymptotes of the quadric, you can't say that there's no deformation,

but that the deformation corresponds to pure rotation and not any fractional change

of length.

In these directions, the length changes, but it is a decrease in length within the

asymptotes. For those directions, the strain is an extension. And again, if you want

to know the direction of the displacement, you find the normal to the surface of the
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quadric in the direction of interest, and that's the direction in which the radius vector

points.

All right. That's I think a good place to quit. I think I'll say a little bit more after the

break about the atomistic reason for increases in interionic separations, which we

can get some insight into from a simple model.

But before we disperse, I don't know if everybody got a copy of problem set 13. If

anybody didn't, there's some extra copies up here. But I will with great pleasure

pass out to you problems set number 14, which has served two purposes. One is to

have you show for yourself that the trace of a second-rank tensor-- I called it

second-order tensor-- second-rank tensor the sum of the diagonal elements is

invariant for a change of reference axes for a general direction cosine scheme for

the change of axes.

And then the other two questions are to give you some practice in diagonalizing a

second-rank property tensor which is not in diagonal form. And I asked you to do

this in two ways. One is by direct solution of the secular equation and finding the

eigenvectors.

And then the third example, which is for a completely general tensor, to do this by

the method of successive approximations. And you'll find after a couple of iterations

you get fairly close to convergence.

So I shall pass this around. And again, I think there's something to be learned from

that. Let's take our stretch then. I'm sure that lecture involved a lot of stress and

strain. Ha, ha. Let's resume in 10 minutes. And we'll then move on to some

additional higher rank tensor properties, which will be very, very interesting. Go for

it.
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