Evolution of lighting

- Ancient times: fire, torches, candles
- Greeks and Romans: bronze and pottery lamps with (olive) oil
- Middle Ages: oil lamps (with reflectors)
- 1784: hollow wick, glass cylinder (Argand, Switzerland)
- end XVIIIth: kerosene
- 1800s: gas street lamps (London)
- 1879: Edison's patent on incandescent lamps
- XXth: mercury vapor lamps in 30^{ies}, fluorescent lamps in 1939, tungsten-halogen lamps in 50^{ies}, metal halide + high pressure sodium in 60^{ies}, electrodeless lamps in 90^{ies}

Light emission

- Incandescence
 - Filament lamps
 - Pyroluminescence
 - Candoluminescence
 - Carbon arc radiation

Luminescence

- Photoluminescence (fluo/phosphorescent lamps, Laser)
- Electroluminescence (LEDs, cathodoluminescence)
- Other luminescence phenomena

Lamp types

- Incandescent (classic, halogen)
- Discharge (fluorescent tubes)
- Electrodeless (induction-based)

8 Natural light

- 7 Low pressure sodium
- 6 High pressure sodium
- 5 Mercury vapor
- 4 Fluorescence
- 3 Metal halide
- 2 Halogen
- 1 Classic incandescent

Incandescent lamps (color °T = 2500 °K)

- Classic incandescence
 - 15 to 500 W
 - 6 to 17 Im/W

Incandescent lamps (color °T = 2500 °K)

- Classic incandescence
- Halogen incandescence
 - 25 to 2000 W
 - 10 to 22 lm/W

Incandescent lamps

Discharge lamps

- Fluorescent tubes
 - 18, 36 or 58 W
 - 53 to 89 lm/W
 - color °T between 3000 and 6000 °K
 - poor to pretty good color rendering

Image by MIT OCW.

Incandescent lamps

- Fluorescent tubes
- Compact fluorescents
 - 3 to 23 W
 - 33 to 65 Im/W
 - 3000 to 3500 $^\circ K$
 - pretty good color rendering

Incandescent lamps

- Fluorescent tubes
- Compact fluorescents
- Metal halides
 - 40 to 150 W for HQI, 250 to 3500 W for HQI-T
 - 85 Im/W for HQI, 80 to 91 Im/W for HQI-T
 - 3500 to 4000 $^\circ\mathrm{K}$ for HQI, 3000 $^\circ\mathrm{K}$ for HQI-T
 - pretty good color rendering for both

Incandescent lamps

- Fluorescent tubes
- Compact fluorescents
- Metal halides
- Mercury vapor
 - 50 to 1000 W
 - 35 to 60 Im/W
 - 3000 °K
 - pretty good color rendering

Incandescent lamps

- Fluorescent tubes
- Compact fluorescents
- Metal halides
- Mercury vapor
- Sodium
 - High pressure: 50-1000 W, 70-130 Im/W, 3000 °K, poor to fair color °T

Incandescent lamps

- Fluorescent tubes
- Compact fluorescents
- Metal halides
- Mercury vapor
- Sodium
 - High pressure: 50-1000 W, 70-130 Im/W, 3000 °K, poor to fair color °T
 - Low pressure: 18-185 W, 100-200 Im/W, no color rendering (one λ)

Incandescent lamps

- Discharge lamps
- Induction lamps (electrodeless)
 - EM induction \rightarrow discharge
 - 70 to 150 W
 - 65 lm/W
 - 3000 °K
 - pretty good color rendering

Image by MIT OCW.

Kinds of luminaires

- Direct extensive
- Direct intensive
- Direct indirect
- Indirect
- Asymmetrical

Kinds of luminaires

Reflectors

Image by MIT OCW.

Image by MIT OCW.

Kinds of luminaires

Reflectors

Emitted flux control

Images by MIT OCW.

Louver

Intensity distributions

- IES 01
- IES12
- IES 06
- IES 15
- IES 02

Intensity distributions

Which luminaire should I choose to illuminate my desk efficiently?

Intensity distributions

Which of these luminaires should I choose to optimize my desk's illumination?

Images by MIT OCW.

Intensity distributions

Which of these luminaires should I choose to optimize my desk's illumination?

Types of luminaires

- built-in
- apparent
- on rail
- suspended
- wall lamps
- standing
- table lamps
- projector

Types of luminaires

Examples in-situ

- direct lighting
 - with diffuser
 - with grate
 - no protection

Types of luminaires

- Examples in-situ
 - direct lighting
 - direct-indirect
 - suspended
 - standing

Types of luminaires

Examples in-situ

- direct lighting
- direct-indirect
- indirect
 - suspended

Types of luminaires

Examples in-situ

- direct lighting
- direct-indirect
- indirect
- pseudo-indirect
 - coffer
 - suspended
 - combined

- Reading assignment from Textbook:
 - "Introduction to Architectural Science" by Szokolay: § 2.5
- Additional readings relevant to lecture topics:
 - "How Buildings Work" by Allen: pp. 120-123 in Chap 13
 - "Heating Cooling Lighting" by Lechner: Chap 14