Sound source in a room

- intensity increases quickly to equilibrium: $I_{equil} = 4 \frac{P}{\Delta}$ where $A = \sum_{i} (\alpha_{si} S_i)$
- switched off then gradual decay
- Reverberation time RT
 - intensity \downarrow by factor 10^6
 - sound level \downarrow by 60 dB

Sabine's empirical equation for RT

```
RT = 0.163 V/A
with
```

 $A = \Sigma (\alpha_{si} S_i)$

depends on frequency

Good acoustics

- Iow background noise, loud wanted sound
- well diffused sound field
- no echoes or acoustic distorsions
- appropriate RT

Good acoustics

- Geometrical acoustics
 - avoid large planar surfaces facing each other (fluttering echo)
 - avoid concave surfaces (focusing)

Image by MIT OCW.

▶ Intelligibility and sound level high sound level → low A → high RT → lower intelligibility

Recommended RT

Intelligibility as a function of delay

- direct sound \rightarrow path |
- reflected sound \rightarrow path l'

Delay

- Δt =(l' l) / 340 [m/s]
- Speech: $\Delta t \leq 35$ ms i.e.
- Music: $\Delta t \le 44 \text{ ms}$ i.e.
- If critical
 - change room geometry
 - add absorbing panels

Image by MIT OCW.

Wave nature of sound

- standing wave if L = n $\frac{1}{2} \lambda$
- proper frequency $f_n = v/\lambda_n = n v/(2L)$
- \rightarrow no rational relationship between lengths
- \rightarrow non-rectangular plan

- Reading assignment from Textbook:
 - "Introduction to Architectural Science" by Szokolay: § 3.4
- Additional readings relevant to lecture topics:
 - "How Buildings Work" by Allen: pp. 129-132 in Chap 14