Ventilation

- supply of fresh air
- removal of internal heat
- heat dissipation from skin

Ventilation

- supply of fresh air
- removal of internal heat
- heat dissipation from skin

Ventilation

Zion National Park Visitor Center (National Park Service & NREL)

Active air flow

Supply of fresh air based on renewal and change rates
Ventilation flow rate vr (m³/s) = V x N (nb of air changes per hour) / 3600
Ventilation conductance qv (W/K) = 1200 (J/m³K) x vr = 0.33 x N x V
Ventilation heat flow: Qv = qv x ΔT

Active air flow

Supply of fresh air based on renewal and change rates

Image by MIT OCW.

Same 60 m³ room as studied for heat flow. Heat losses through façade due to conduction = 190 W

Losses due to air renewal (N = 0.7 h^{-1})? What should N be for ventilation and conduction losses to be equal?

Passive air flow

 Fluid mechanics: p + ρgh + ½ ρv² = constant (Bernouilli) hydrostatics :

 $\Delta p = {}_{-\Delta}h\rho g$ stack effect :

> $\Delta p_{i-e}(h) = (h-h_n)g(\rho_e - \rho_i)$ $\rho(T) = \rho_0 \cdot p/p_0 \cdot T_0/T$

Passive air flow

• Fluid mechanics: $p + \rho gh + \frac{1}{2} \rho v^2 = \text{constant}$ (Bernouilli) hydrostatics : $\Delta p = -\Delta h\rho g$ stack effect : $\Delta p_{i-e}(h) = (h-h_n)g(\rho_e - \rho_i)$ $\rho(T) = \rho_0 \cdot p/p_0 \cdot T_0/T \approx 1.29 (kg/m^3) \cdot 273/T$

hydrodynamics (wind) : $\Delta p = -\frac{1}{2} \rho \Delta v^2$, Venturi effect : $S_1v_1 = S_2v_2$

Passive air flow

- Fluid mechanics
- Pressure \downarrow if speed \uparrow
- Turbulent vs. steady flow

Image by MIT OCW.

Ascending and descending movements along facades

Influence of relative heights

Air Flow

Reading assignment from Textbook:

- "Introduction to Architectural Science" by Szokolay: § 1.1.4 + § 1.4.2
- Additional readings relevant to lecture topics:
 - "How Buildings Work" by Allen: Chap 11
 - "Sun Wind Light" by Brown & DeKay: § 6 in Chap 1A