

- frequency distribution of mean daylight factor by year
- a closer analysis shows that none of the students built a 'correct' model
- the higher number of simulation results in the acceptable range indicate the effectiveness of 'simulation tips'

	 Did you decide which daylighting performance metrics to simulate and how to interpret the results? 	Ibarra
Before you	 Do you have a general idea of what the results should look like? E.g. a mean daylight factor in a standard sidelit space should lie between 2% and 5%; interior illuminance should lie between 100 lux and 3000 lux and daylight autonomies should range from 20% to 90% throughout the space. 	
Start	 Have you verified that the simulation that you intend to use has been validated for the purpose that you intend to use it for, i.e. that the simulation engine produces reliable results and that the program supports the sky models related to your performance metric of choice? (An example would be the old CIE overcast sky for daylight factor calculations.) 	
	 Have you secured credible climate data for your building site? (This is only required for certain daylighting performance metrics.) 	
	 Did you model all significant neighboring obstructions such as adjacent building and trees? 	
	Did you model the ground plane?	
	 Did you model wall thicknesses, interior partitions, hanging ceiling and larger pieces of furniture (if applicable)? Try to model all space dimensions within a 5cm tolerance. 	
Scene Scene S S S S S S S S S S S S S	 Did you consider window frames and mullions by either modeling them geometrically or by using reduced visual transmittances for windows and skylights? 	
	 Did you check that all window glazings only consist of one surface? Several CAD tools model double/triple glazings as two/three parallel surface whereas daylight programs tend to assign the optical properties of multiple glazings to a single surface. 	
	 Did you assign meaningful material properties to all scene components (see Table 10.1)? 	Book Chapter: Reinhart C
	 Did you model any movable shading devices such as venetian blinds/ (The choice to model movable elements is related to the performance metric that you intend to use.) 	"Simulation-based Dayligh
	 Make sure that you set up your project files correctly. This may involve: 	Performance Predictions
	 Checking that your project directory and file names do not contain any blanks (" "). 	Simulation for Design and
Simulation	 Verifying that all sensors have the correct orientation i.e. work plane sensors are facing up and ceiling sensors are facing down. 	Operation, Editors J Hens
Setup	Setting the resolution of the work to 0.5m x 0.5m or 1ft x 1ft and placing it around 0.85m above the floor.	and R Lamberts, Taylor
	 Selecting simulation parameters that correspond to the 'scene complexity'. To do so you should consult the technical manual of your simulation program. 	Francis, to be published ir January 2011
	> Selecting the correct sky model (CIE, Perez).	

Modeling Materia	als
	List of common material surface properties.
Table 10.1: Optical p	properties of common material surfaces.
Interior floor	20% diffuse reflectance [*]
Interior wall	50% diffuse reflectance [*]
Interior Ceiling	80% diffuse reflectance [*]
Interior Ceiling (high reflectance)	90% diffuse reflectance
Double Glazing	72% direct visual transmittance
Single Glazing	90% direct visual transmittance
Translucent Glazing	20% diffuse-diffuse hemispherical transmittance ⁺⁺
Exterior Building Surfaces	44% diffuse reflectance [#]
Exterior Ground	20% diffuse reflectance
Taken from IESNA Handbook (Rea 2	000)
⁺⁺ Taken from (Reinhart and Anderser	n 2006)
* Taken from (Leder, Pereira and Mor	raes 2007)
specular versus Lambe	rtian reflectors
significance of material	libraries
selecting meaningful m	aterial properties is your responsibility
	III

Record Tools View Help ಔ		
Glacing System Library	á.	
10 B. T Name Down loved	11	
Environmental Justice 100-2010		
Conditions Information		
Overal Buckness 18.917 mm Mode I		
ID Name Mode Thick Fig Taol Root Root Tvis Rvit Rvit Ta	E1 E2	
Gep1 ++ 2 Argon 125	0.040 0.004	
Glass 2 → 5142 51000_3PPG 8 33 0 0600 0.150 0.256 0.067 0.054 0.053 0.000	0.842 0.00 0	
•		
Center of Glass Results Temperature Data Optical Data Ancolar Data Color Properties		
Illiantee SC SHSC Rel Ht Gain Ture Kall		
W/m2K W/m2 W/mK		
1.036 0.442 0.304 252 0.461 0.0564		
E handl		

	d units; 1/3	2° air gap											
	PRODUCT		TRANSMITTANCE				REFLECTANCE			U-Factor			1000
SageGlass® Product	Level of	Inner lite	Visible	solar	UV	KDF	VIS IN	VIS ext	Solar	Winter	Summer	SHGC	LSG
1100001	clear	2	62%	38%	5%	17%	12%	11%	14%	0.29	0.28	0.47	9
Classic™	20%	Comm close	21%	9%	3%	9%	10%	6%	9%	0.29	0.28	0.17	0.17 0.11 6.9 0.09
	fully	6mm clear	076	670	176	378	2.10	576	10%	0.29	0.28	0.11	
	tinted		2%	0.7%	0.5%	1%	10%	5%	11%	0.29	0.28	0.09	
	class		226	200	00	120/	1.992	1.150	144	0.10	0.28	0.46	_
Classic™	20%	Laminated 060 PVB	21%	8%	0%	7%	11%	6%	9%	0.28	0.28	0.46	6.9
	6%		6%	2%	0%	3%	11%	5%	10%	0.28	0.28	0.10	
	fully		2%	0.6%	0%	1%	11%	5%	11%	0.28	0.28	0.09	
													1
	clear int 1		48%	18%	4%	15%	9%	6%	13%	0.29	0.28	0.44	
See Green TM	int 2	6mm tinted	5%	2%	1%	3%	7%	5%	10%	0.29	0.28	0.10	5.3
	fully		1%	0.5%	0.4%	1%	7%	5%	11%	0.29	0.28	0.09	
	- mord					_		-			-	_	
Cool View Blue TM	clear	5 1 3	41%	29%	0%	11%	8%	10%	14%	0.28	0.28	0.45	11
	int 1	Laminated 060 PVB	4%	2%	0%	2%	7%	5%	10%	0.28	0.28	0.10	0.16 0.10 4.8 0.09
	fully		10/	0.50	00	0.79	78/	50/	110/	0.28	0.20	0.00	
	tinted		176	9.376	056	0.7%	170	576	1159	0.28	U.26	0.03	
	clear	-	35%	27%	0%	10%	7%	10%	13%	0.28	0.28	0.45	_
Clear-as-Dav	int 1	Laminated 060	12%	5%	0%	5%	6%	6%	9%	0.28	0.28	0.16	4.0
Gray TM	int 2	PVB	3%	2%	0%	2%	6%	5%	10%	0.28	0.28	0.10	
	tinted		0.9%	0.4%	0%	0.7%	6%	5%	11%	0.28	0.28	0.09	

<section-header><section-header><text>

MIT OpenCourseWare http://ocw.mit.edu

4.430 Daylighting Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.