4.430 Daylighting

Assignment 3

\square Some of your are amazingly close!
\square For the results near the window I believe that the single pane glazing has a lower falloff for higher angles than the Radiance model.Desktop height 85 cm ; falls within measurement uncertainty.

Goals for This Week

Where is the sun?
\square Designing Static Shading Systems

IVIT

Sky Radiance Distribution

Sky Models

The solar radiation coming from different parts of the sky is defined by the sky radiance distribution function.

IDIT

Sky Models

$\frac{L_{a}}{L_{Z}}=\frac{\mathrm{f}(\mathcal{y}) \cdot \varphi(\mathrm{Z})}{\mathrm{f}\left(Z_{\mathrm{s}}\right) \cdot \varphi(0)}$ with $\varphi(\mathrm{Z})=1+a \cdot e^{\left(\frac{b}{\cos (\lambda)}\right)}$ and $f(\mathcal{x})=1+\mathrm{c} \cdot\left[e^{d_{\mathcal{J}}}-e^{a^{\frac{\pi}{2}}}\right]+\mathrm{e} \cdot \cos ^{2}(\mathcal{X})$
\square Sky radiance distribution functions. Are defined using a different coordinte system than azimuth and altitude.
$\square \varphi(\chi)$ is called the radiance gradation function. It defines the changes of luminance from horizon to zenith. For a uniform sky this function corresponds to unity ($\mathrm{a}=0$).
$\square \mathrm{f}(\chi)$ is called the scattering indicatrix. It relates the changes of luminance of a sky segment to its angular distance from the sun (circumsolar region).

Visual Comparison: Perez \& Real Sky

Radiation Maps

How to calculate Solar Radiation in an
Urban Setting?

Radiation Maps using Ecotect
(not recommended)

Ecotect solar access calculation for Boston, MA

How does the calculation work?

\square Step (1): Uses EnergyPlus annual climate data.

맢

How does the calculation work?

\square Step (1): Uses EnergyPlus annual climate data.

- Step (2): Generate Perez sky radiance distribution for each hour of the year/of interest.

How does the calculation work?

\square Step (1): Uses EnergyPlus annual climate data.
\square Step (2): Generate Perez sky radiance distribution for each hour of the year/of interest.
\square Step (3): Add up sky conditions for hours of interest and store the values in 145 bins.

Cumulative Sky proposed by several authors including Mardaljevic, Compagnon, Robinson \& Stone. We are using Robinson \& Stone's approach. Reading 2.3 on the course web site.

How does the calculation work?

\square Step (1): Uses EnergyPlus annual climate data.
\square Step (2): Generate Perez sky radiance distribution for each hour of the year/of interest.
Step (3): Add up sky conditions for hours of interest and store the values in 145 bins. \square Step (4): Run a simulation under cumulative sky.

Radiance

Radiation Map

We are using Radiance for the simulation (global illumination calculation).

Annual Radiation Study

Radiation Map Analysis

Shading

마푼

Why Shading?

\square Avoidance of visual discomfort (glare).
\square Avoidance of thermal discomfort (overheating).
\square Avoidance of cooling loads (energy)

Why not Shading?

\square Solar gains needed to reduce heating loads.
\square Maintain a view to the outside.

Combined Fins and Overhangs

Patterned Louvers

Image of patterned louvers in Santiago de Chile removed due to copyright restrictions.

Iconic Louvers

New York Time, Archticture R Piano

Static Shading: When, where, how?

마TTN

When designing a static shading device for a window, the task can be divided into two steps:

(1) When is it desirable to have direct solar radiation incident on a window?
(a) Find a start and end date
(b) Find a start and end time of day
(2) What form should a shading device have to fulfill the requirements form step (1)?

(1) When is it desirable to have direct solar radiation incident on a window?

Find a start and end date for the shading period:
\square Option 1: The cooling period lasts from March 21 to September 21.

O Option 2: Crossover between heating and cooling degree hours.
\square Option 3: Crossover between heating and cooling loads.

माT

Heating Degree Days (HDD)

\square The number of heating degrees in a day is defined as the difference between a reference value of $65^{\circ} \mathrm{F}\left(18^{\circ} \mathrm{C}\right)$ and the average outside temperature for that day.
\square Rule of thumb: If a site has
$\square>5000^{\circ} \mathrm{F}$ HDD ($\sim 2800^{\circ} \mathrm{C}$ HDD): long cold winters
$\square<2000^{\circ} \mathrm{F}$ HDD ($\sim 1100^{\circ} \mathrm{CHDD}$): mild winters
\square Fixed base temperature allows to compare different climates but $65^{\circ} \mathrm{F}$ is not representative for buildings.

Cooling Degree Days (CDD)

\square The number of cooling degrees in a day is defined as the difference between a reference value of $65^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ and the average outside temperature for that day.
\square Rule of thumb: If a site has
$\square>1500^{\circ} \mathrm{F}$ CDD ($\sim 800^{\circ} \mathrm{C}$ CDD): long hot summers
$\square<500^{\circ} \mathrm{F}$ CDD ($\sim 300^{\circ} \mathrm{C}$ CDD): mild summers

마TTN

Heating and Cooling Degree Hours

- Heating Degree Hours based on 18 C; Cooling Hours based on 20 C.
\square Measure for the severity of a climate.
\square Related to annual energy use.

Heating and Cooling Degree Hours

\square Shaded period has to be symmetrical around the summer solstice.

IVIT

(1) When is it desirable to have direct solar radiation incident on a window?

Find a start and end date for the shading period:
\square Option 1: The cooling period lasts from March 21 to September 21.
\square Option 2: Crossover between heating and cooling degree hours.
\square Option 3: Crossover between heating and cooling loads.

Option 3. One Zone Thermal Simulation

Option 3. One Zone Thermal Simulation

Residential

Airport Terminal

Option 3. One Zone Thermal Simulation

Heating Season: ~ October 15 to April 30
Cooling Season: ~ June 1 to Sep 15

(1) When is it desirable to have direct solar radiation incident on a window?

Find a start and end time of day e.g.:

- 9AM to 3PM
- 10Am to 2PM
- at noon

Sensitivity Analysis Using Radiation Maps

Radiation during cooling period: June 1 to September 15:

(2) What form should a shading device have to fulfill the requirements form step (1)?

Option 1: 2d for method for a simple overhang.

Traditional Architectural Language

Photograph of Cite de Refuge removed due to copyright restrictions.

(2) What form should a shading device have to fulfill the requirements form step (1)?

Option 2: 3d for method for a simple overhang.

June $1^{\text {st }}, 10 \mathrm{AM}$ no shading

(2) What form should a shading device have to fulfill the requirements form step (1)?

Option 2: 3d using Ecotect Shading Wizard

Diagrams of horizontal shade and surround shade removed due to copyright restrictions.

(2) What form should a shading device

 have to fulfill the requirements form step (1)?Option 2: 3d using Ecotect Shading Wizard

Hybrid Facades

Renderings of Hotel Tower by Lang Hugger Ramp and ASCER Project removed due to copyright restrictions.

The sizing of the overhangs is guided by formal aspects rather than by environmental performance.

Shaderade - A new Approach

Static Exterior Shading: SHADERADE

New Approach: Break shading volumes / surfaces into small pixels, and assess the thermal value of one pixel at a time.

For speed, we run one thermal simulation of the space without shading, and then cast solar rays to find all hours during which a pixel casts direct shade on a window. Based on loads and transmitted solar gains at those hours, the pixel is given credit for reducing cooling or punished for increasing heating.

Static Exterior Shading: SHADERADE

Once the volume has been assessed, any surface within its bounds can be visualized:

Courtesy of Jon Sargent, Jeff Niemasz, and Christoph Reinhart. Used with permission.

相

Static Exterior Shading: SHADERADE

Trimming away regions with negative value (cutoff = 0)

Static Exterior Shading: SHADERADE

Increasing cutoff produces more 'efficient' shade.

Static Exterior Shading: SHADERADE

Horizontal and surround shades
Load optimized, 85% value trim:

Anchorage

Static Exterior Shading: SHADERADE

Horizontal and surround shades, Carbon optimized, 85% value trim:
(COP of 1.67, 0.83 for cooling heating; carbon equivalent factors of $0.232,0.758 \mathrm{~kg} / \mathrm{kWh}$ for gas , electricity)

Anchorage

Boston

Phoenix

How does Shaderade compare to conventional methods?

\square SHADERADE is consistently in the top range.

MIT OpenCourseWare
http://ocw.mit.edu

4.430 Daylighting

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

