Natural Light in Design Using simulation tools to explore realistic daylightresponsive solutions

Daylight Factor

Visual Comfort

Avoidance of Direct Sunlight

Daysim

Christoph Reinhart, Ph.D.

Overview – Daysim

Tuesday, Jan 24* 2006					
time slot	Content	instructor			
Mon 9.30	Welcome, class introduction, design project (teams formed next morning)	MA, all			
Mon 10.00	 General Introduction to daylighting (benefits, history, some case studies) 	MA			
Mon 10.30	 Introduction to Building Simulation (why simulations for architects, tools 	CR			
	used in this course)				
Mon 11.00	coffee break				
Mon 11.15	 Photometry (definition, measurement, typical values, DF definition (MA) 	MA, CR, all			
	 Static Daylighting Metrics (context of LEED, selected results from NRC 				
	survey, DF & Solar Shading) (CR)				
	 Daylight factor calculations: protractor method, LEED spreadsheet 				
	method, sky models CIE and Perez (MA)				
	 Daylight factor simulation: design sky, split flux method in Ecotect (CR) 				
	 Hands-on exercise: DF calculation in Ecotect (split flux) (CR) 				
	 Hands-on exercise: solar shading module in Ecotect (CR) 				
	- Intro to Radiance (CR)				
	 Hands-on exercise: Hadiance visualizations [CH] 				
	 Hands-on exercise: DF calculation in Ecotect [Hadiance] [CH] 				
Mon 13.00	lunch (on your own)				
Mon 14.00	 Climate Data (kind of data and measurement, weather files, E+ weather 	MA, CR, all			
	data directory) (MA)				
	 Hands-on exercise: weather tool in Ecotect (CR) 				
	Overview on visual comfort (glare, contrast, requirements, health) (IVIA)				
Mar 45 45	Dynamic Metrics & related tools [CH]				
Won 15.45	contee break				
1Vion 16.00	 Hands-on exercise: Daysim exercise from tutorial interrupted by discussions and 	aii			
	alscussions on:				
	- Snort time steps dynamics				
	- Daylight Coefficients				
	- User Benavior Model Devilat Autonomy Depulto				
Map 17.00	Daylight Autonomy Results Leade on eventions students to percent at DE Cales Chading 2.2.4 analysis				
1000 17.00	 Hands-on exercise, students to repeat at DF, Solar Shading &DA analysis on their own. 	80			
Mag 17.00					
1VI00 17.30	end of first day				

Required Work Flow SketchUp/ AutoCAD/ Ecotect/ ...

Daysim Simulation Report

My Computer

-

Daysim Simulation Report

Project Header File: C/D6YSIMErroject0Ev6.1Davlinb/inn8nalvsisOt6SinnleOffice/header1.hea Petalled analysis of annual internal gains can be found under: C/DAYSIM/project/Er.S. DaylightingAnalysis/DRASingleDMoa/res/readert.intgain.org Note: All terms used in this report are explained in the DAYSIM help.

The predicted annual electric lighting energy use in the investigated zone is: 20.6 kWh/unit area

Assuming a lighting zone size of 15 unit area, this corresponds to a total annual lighting energy use of 309 3kWh/a

Site Description

The investigated building is located in Ottawa (45.32 N/ 75.67 E). Daylight savings time lasts from April 1st to October 31st. The picture below shows a visualization of the building model.

Daysim Analysis www.daysim.com

	DAYSIN	1 2.1 [C:/D/	AYSIM/projec	ts/]		다 ^ピ 전 ^기	×
<u>F</u> ile	<u>S</u> ite	Building	Simulation	Analysis	Help		
ГВ	uilding	Model			<u> </u>	Sensor Point File Your current sensor file is: Pick a Sensor Point File Shading Device Please specify the shading decive mode.	
				-		Static Shading device (included in building geometry)	

Note: The material and geometry files are stored in the project folder under the "rad" sub-directory

falsecolor maps

a) Done

Daysim Statistics

www.daysim.com

Example I – Single office

three lighting zones

Located in Ottawa Canada

 \langle Taken from Daysim tutorial

Your Task: Use Daysim to:

• Calculate daylight autonomy and daylight factor in the offices

• Estimate the lighting energy savings from an occupancy sensor.

Solar Energy Walkenhorst, Reinhart 2002

Development of a stochastic Model to calculate 1-min irradiances from 1 hour means

global imadiation [///fm ²]

Step 1: Normalization

Interval 1 Interval 2

7AM to 8 AM

10001 cav 01

16 18

20

22

10

8

Climate data – US DOE

http://www.eere.energy.gov/buildings/energyplus/cfm/weather_data.cfm

Dynamic Daylight Simulations (DDS)

As opposed to static DL simulations that only consider one sky condition at a time, dynamic daylight simulations generate annual time series of interior illuminances and/or luminances.

Daylight Coefficients

(1) Division of the Celestial Hemisphere

Comparison of Dynamic Daylight Simulation Methods Energy & Buildings

Reinhart & Herkel 2000

Daylight coefficients: "fastest method & most accurate dynamic method"

Validation II

Light. Res. & Technology Mardaljevic, 1997

Daylight Coefficients: "same accuracy as standard Radiance"

Validation III - Venetian Blinds

Energy & Buildings Reinhart, Walkenhorst 2001

RADIANCE-based simulation approach

Validation IV - Translucent Panel

Energy & Buildings Reinhart, Andersen 2005 (in review)

Need for a quality controlled material database.

 Radiance combined with daylight coefficients and Perez sky model can efficiently and reliable calculate DDS. (validated approach – several independent studies – resulting accuracy ~20% rel. error – comparable to static simulations)

Radiance Simulation Parameters I

ambient bounces	ambient division	ambient sampling	ambient accuracy	ambient resolution	direct threshold	direct sampling
5	1000	20	0.1	300	0	0

max scene dimensions x ambient accuracy

simulation resolution =

ambient resolution

Radiance Simulation Parameters II

Higher raytraing parameters for blinds

aa and ar:

raytracing detail

ambient bounces	ambient division	ambient sampling	ambient accuracy	ambient resolution	direct threshold	direct sampling
7	1500	100	0.1	300	0	0

max imum scene dim ension x ambient accuracy ambient resolution 10m x 0.1 /300~0.3cm (blind slat)

Manual blind control model

 \langle Daysim: active (energy conscious) or passive user

Associate work plan sensor with window

 \langle Note: this step requires to couple individual sensors together.

 A Benefit: Direct comparison between daylighting concepts with and without movable and/or fixed shading devices
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example I – Single office

Daylight factor simulation

Example I – Single office

Daylight Autonomy simulation

< ample amount of daylight in both offices
< up to 30% DA on aisle => on/off switch with timer

Lighting Controls I

wall mounted

ceiling mounted

Occupacy Sensors

- IR: detect changing heat fields (work best when its cool inside)
- UV: detects changing movements (cannot differentiate between a fax machine and a person)
- wall, celing mounted, integrated in luminaire
- stand alone, connected to BAS

Lighting Controls II

Photocell-controlled Dimming with

Occupancy Sensor

Photocell.

Occupancy sensor.

Example I – Single office

Electric Lighting Use in South facing Office

Example II - Museum Lighting

CIE TC3-22 'Museum lighting and protection against radiation damage'

category	material classification	example of materials	lighting illuminance	limiting annual exposure
	insensitive	metal, stone, glass, ceramic	no limit	no limit
I	low sensitivity	canvases, frescos, wood, leather	200 lux	600 000 lux h /yr
III	medium sensitivity	watercolor, pastel, various paper	50 lux	150 000 lux h/yr
IV	high sensitivity	silk, newspaper, sensitive pigments	50 lux	15 000 lux h/yr

Example II: Seattle Art Museum -Arup Lighting using Daysim

3D model of site and building

ARUP Lighting

Source: Matt Franks 'Daylighting in Museum's

http://irc.nrc-cnrc.gc.ca/ie/light/RadianceWorkshop2005/PDF/Franks_ArupCaseStudies.pdf

Example II - Seattle Art Museum -Arup Lighting using Daysim

Sidelit Gallery

ARUP Lighting

lux	
285	
255	
225	
195	
165	
135	
105	
75	
45	
15	

Example II - Seattle Art Museum -Arup Lighting using Daysim

Museum Open Hours - 1,500,000+ lux-hours

ARUP Lighting

Month

Example II - Seattle Art Museum -Arup Lighting using Daysim

Automatic Shading + Switching - 555,000 lh ARUP Lighting

Interior Illuminance Plot - Hourly Measurements 800 600 Vertical Illuminance (Lux) 400 200 0 Jan Feb Jul Sep Nov Dec Mar Apr May Jun Aug Oct

Month

Example III - Classroom

