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5.112 Principles of Chemical Science, Fall 2005 
Transcript – Lecture 3 

Let's pick up from where we were on Friday. 

We had discovered the nucleus. Now we were faced with the problem, 
as all the scientific community was in 1911, in trying to understand the 
structure of the atom. Where was the nucleus in the atom? Where 
was the electron? How were they bound? How did they hang 
together? And we talked about the fact that the electron in the 
nucleus, the force of interaction is the Coulomb force. 

And we started talking about how, at that time, the only equation of 
motion that was going t o allow up to figure out how the electron and 
nucleus moved under influence of this Coulomb force was Newton's 
equations of motion, in particular the Second Law, F=ma. 

And so, in order to apply that equation of motion, we needed a model 
for the atom. And what was the simplest and most obvious thing to do 
was to suggest the planetary model. After all, that is how the 
astronomical bodies moved around the sun. 

And so the model that is set up is one where this electron has a 
uniform circular motion around the nucleus with a well-defined radius, 
which we called R star. We said that given this, the acceleration was a 
constant. 

It was given by V squared over R. The linear velocity over R. We 
plugged that into F=ma, put in the Coulomb force, and from that were 
able to calculate the kinetic energy of that electron going around the 
nucleus. 

Well, the reason I want to calculate the kinetic energy from this model 
is because I want to ultimately calculate the total energy. And why I 
want to calculate the total energy is going to be obvious in just a few 
minutes. 

My goal is to get the total energy. Actually, I am using my notes from 
Friday because I didn't finish them. You may need to get them out. 

http://ocw.mit.edu


This will probably often be the case, is that I won't quite finish the 
notes from the other lecture. 

I will start out the next lecture where I left off, so you should bring 
your previous day's notes to class if, in fact, you use them during 
class. I want the kinetic energy plus the potential energy because I 
want both of them to add them up to get the total energy. 

I know the kinetic energy. Now, we need the potential energy. What 
is the potential energy? Well, the potential energy is the integral over 
the operating force over the appropriate limits. In this case, if our 
force of interaction is the Coulomb force, which I will just represent as 
F or R, I am going to integrate this from R star out, and this is going to 
be minus the integral of the force. 

Now, some of you may have seen this before. This is a general case, 
the potential energy of anything is minus the integral of the operating 
force over the appropriate coordinates. If you have seen it before, 
that is fine, you are happy. 

If you have not seen this before, you are panicked. Don't panic. I do 
not hold you responsible for this. You will see it in 8.01 later on this 
semester. When you see it later on, you can come back here and say, 
OK, now I know what is going on. 

But I just need it right now to make a point about the total energy of 
the system. And that is what is going to lead me to the conundrum. I 
need the potential energy. It is the integral of the force. 

Let me plug in here my force that is operating, E squared 4 pi epsilon 
knot R squared. I do that integral and put in the appropriate limits. It 
is minus E squared over 4 pi epsilon knot R star. Now I have kinetic 
energy plus potential energy. 

Let me add them up. The kinetic is one-half E squared 4 pi epsilon 
knot R star. Potential minus E squared over 4 pi epsilon knot R star. 
The result is minus one-half E squared 4 pi epsilon knot R star. 

That is the total energy here of this particular system. Well, why I 
wanted this total energy is to show you that this total energy is 
negative. What that negative means to us is that the system is bound. 

The electron and the nucleus are stuck together. And I can show you 
that maybe a little more clearly if I draw an energy level diagram. Let 



me plot here the total energy. And I am plotting it as a function of R, 
the distance between the electron and the nucleus. 

Well, what you can see is that for very large R, the energy here is 
going to be zero. Way out here, for very large R, where we have the 
electron and the nucleus separated infinitely apart, the energy is zero. 

And, of course, as you bring them closer together the energy goes 
down. And when you are exactly, and we calculated this, at R star 
here, well, then the total energy is minus one-half E squared over 4 pi 
epsilon knot times R star. 

If you brought the electron and the nucleus into this value here of R 
star, the energy would change like that. But the big point is this 
energy is negative, or it is lower than the electron and the nucleus 
separated. 

That means that the electron and nucleus are stuck together. You are 
going to have to put this much energy into the system in order to pull 
them apart. That is the big point here, is that this model so far looks 
like everything is hunky-dory. 

Everything is working. The electron stuck to the nucleus. It is not 
going anywhere. It looks terrific. But here comes the conundrum. 
The conundrum is that classical electromagnetism, which was pretty 
well understood by this time, 1911, 1912. 

Maxwell's equations, that was down pat. But what classical 
electromagnetism says is that when you have a charge, and this 
electron is a charge, that is accelerating, that charge has to be 
emitting radiation. 

It has to be giving off energy. After all, that is actually how an antenna 
works. In an antenna, what you are doing is taking charge and 
sloshing it, accelerating it. When it accelerates, it emits radiation. 

That is how you broadcast. That is true it was known in 1911. 
Synchrotron radiation works the same way. When you have a 
synchrotron, the way you get synchrotron radiation is essentially by 
accelerating charge. 

That is a given and is actually, again, something you will talk about in 
much more detail in 8.02. But the point here is if this charge is being 
accelerated, and it is, then it must be giving off radiation. 



It must be giving off energy. Well, if it is giving off energy, we look at 
our energy expression here. That must mean that the energy in the 
system is going down because it is losing the energy. It is giving it off 
to radiation. 

If E is going down, it is getting more negative here. The only way for 
E to get more negative is for this R star right here to be changing. Is 
for R star to be getting smaller and smaller and smaller. 

Well, we could set up another set of equations using what we know 
from classical electromagnetism and from what we have already done 
here. What we would find is that this value here of R star would go to 
zero in T equal 10 to the minus 10 seconds if R was originally on the 
order of an angstrom to begin with. 

Here is the problem. Classical equations of motion coupled with 
classical electromagnetism, they are making a prediction that my atom 
is not going to live more than 10 to the minus 10 seconds. Because in 
10 to the minus 10 seconds that electron is on top of the nucleus. 

We no longer have an atom that was already known to have a volume 
associated with a diameter that is about an angstrom. The classical 
way of thinking is making a prediction that is not consistent with the 
observations at that time. 

And even now it is predicted that the atom essentially kind of 
annihilates, collapses in 10 to the minus 10 seconds. And that is the 
problem that the scientific community had in 1911. That is the 
problem we have right now. 

And they had it for 10, 12 years. Now you can say what is wrong 
here? Well, it is possible, and they were thinking about this, too. It is 
possible that maybe this force is wrong, this Coulomb force. 

That is a possibility. Or, of course, maybe it is the equations of motion 
that are wrong. That is possible. Or, maybe it is classical 
electromagnetism that is wrong. Well, of course what it is going to 
turn out to be is the equations of motion, F=ma. 

Bottom line is that you cannot use classical mechanics to explain the 
motion of this microscopic particle, the atom, in the constrained 
environment of an atom. That is the bottom line. We need different 
mechanics. 



We cannot use classical mechanics to describe how that electron hangs 
on that nucleus, how they are bound. And so that was the problem. 
This signaled something was really amiss in the scientific community in 
the world at that time. 

That is our problem now, too. What is the next step? Well, historically 
the clues about why the electron did not actually collapse into the 
nucleus, like classical physics predicted, is they came from a 
completely different area of discussion. 

It came from the discussion of the wave particle duality of light and 
matter. It was long believed that matter, with its particle-like 
behavior, was distinct from light, which was this transmission of 
energy through space. 

But, in the last 1800s and early 1900s, there were a few experiments 
that appeared on the horizon that began to suggest that maybe this 
boundary between matter with its particle-like behavior and radiation 
with its wave-like behavior was not as rigid as thought. 

And, in fact, what we are going to see is that radiation has both wave-
like properties and particle-like properties. It depends on the 
particular experiment that you do which one of those behaviors you 
see. 

And, consequently, matter behaves both as a particle and a wave. 
Again, it depends on exactly what experiment you do, which one of 
those properties you observe. What we are going to do right now is 
put aside the discussion of the structure of the atom. 

We are going to put it aside until next Monday. We have to do that 
because we need some more information in order to take a big leap to 
get us out of this constraint of classical mechanics. And those clues, 
as I said, came from this discussion of the wave-particle duality of 
light and matter. 

And that is what we are going to be talking about for the next three 
lectures. Then we are going to come back and tie in those results to 
the structure of the atom. Of course, where that is going to lead us is 
a new equation of motion called quantum mechanics. 

That is where we are going. Let's start off by talking about radiation 
or light. We are going to talk about its wave-like properties, then 



Wednesday we are going to talk about the particle-like properties of

light, and Friday we are going to talk about the wave-like properties of

matter.


That is where we are going. Let's talk about waves here. You all know

that waves are some periodic variation of a quantity. A water wave,

for example, is a periodic variation of the level of water.


At some points in space, the water level is high. At other points, the

water level is low. Sound wave. Well, a sound wave is the periodic

variation of the density of air. At some points in space, the air is very

dense.


At other points in space, the air is not dense. Well, light or radiation is

a period variation of an electric field, as I depict here on this slide.

Electric field versus position. There is a periodic variation of the

electric field.


Now exactly what is an electric field? Some of you know this, some of

you don't, but an electric field is literally the space through which the

Coulomb force operates. For example, if we have a negatively charged

plate and a positively charged plate here.


The space through which the force is operating here, and the Coulomb

force is operating because we have two plates here that are oppositely

charged, is the electric field. If we put a positive charge in that space,

you know what is going to happen.


In this coordinated system, the positive charge is going to float up.

Because the negatively charged plate is up above. If we reversed the

potential difference and put a positively charged particle in this electric

field, in this space, it is going to move down because now the

negatively charged plate is lower.


This electric field here has not only magnitude -- You can imagine here

the magnitude is given by the difference in the potentials of these

plates. The larger the difference, the larger the magnitude.


But it also has direction. In one case, it is pointed this way. In the

other case, it is pointed that way. And that is reflected here on this

plot of the electric field here. What you see is that right here, the

magnitude of the electric field is small.




As you move along in X that magnitude increases, goes to a 
maximum, then turns around and at some point literally is zero. And 
then the electric field changes direction and its magnitude increases in 
the opposite direction. 

Increases, increases, gets to a point, then turns around and becomes 
zero again. If you have a charge in a radiation field and you put it 
right here -- Well, it would be pulled in one direction. If you put it 
over here, it would be pulled in the other direction. 

We have a magnitude and we have a direction. Now, not only is light 
a periodic variation of the electric field in space, it is also a periodic 
variation of the electric field in time. That is, this is a picture of that 
field, that one instant in time. 

We will call it T=0. However, that electric field moves. It propagates. 
And the distance, or the time it takes for the electric field here to 
move over one wavelength, I have shown this as a star. 

The time it takes for this maximum to go from here to here, one 
wavelength, is defined as one period. And a period is given by one 
over nu where nu is the frequency of the radiation. It is the number of 
cycles per second. 

In other words, if you were sitting here at X=0, you were tied at X=0, 
and you were just watching this electric field come by. You would see 
a maximum in that electric field, one maximum every second if the 
frequency is one hertz. 

In other words, the frequency is the number of maxima you would see 
pass by you per second. Well, we have a unit to characterize 
frequency. I call it cycles per second. It is cycles per second, but the 
formal unit is hertz. 

Hertz is inverse seconds. We leave out the number of cycles. The 
number of cycles is implied in the unit of hertz. To give another 
example here, suppose we had some radiation and the frequency of 
that radiation was one hertz. 

Suppose we had an electron, an electron is charged, and we put here 
at X=0 and we tie it at X=0. What is going to happen to this electron? 
Well, what is going to happen is that this electron is going to be pulled 
down and then it is going to be pushed back up once every second 
because the frequency here is one hertz. 



It is charged and we are tying at X=0. It is going to go like this. It is 
going to oscillate once every second if this frequency is one hertz. 
Here it goes. An electron is pulled down and then pushed back up 
once every second. 

Now, we, of course, can write an equation to describe this oscillation of 
the electric field in both space and time. X is the position variable T, 
the time variable, and I have written it down here. 

I will explain this more in just a moment, but what I also want to point 
out is that an oscillating electric field always, always, always has 
perpendicular to it an oscillating magnetic field. That is well described 
by Maxwell's equations. 

Again, you are going to see that in 8.02. And the magnetic field here 
has the same essentially function form and characteristics as this 
electric field. And, because it does, I am just going to talk about the 
electric field. 

Here is the expression for the magnetic field. I just call it H. But, 
again, it is a function of position and time. Here is an illustration, just 
the variation of the electric field. Light radiation is actually a variation 
in space and time of both the electric and a magnetic field. 

That is why it is electromagnetic radiation. Now, let me show you on 
the 8.02 website. Let me get that rolling. There it is. Now we have to 
start it. All right. One of these is the electric field. 

The other one is the magnetic field. This is a simulation that 8.02 has 
made for you. You can go and look at it on the 8.02 website, but you 
can see it propagating here in time and you can see its variation in 
space of this electromagnetic field. 

Let's look at this functional form just a little more carefully just to 
make sure everybody is on the same page. I think many of you have 
seen this before. What we are going to do, because we have two 
variable, is we are going to hold one variable constant and plot it as a 
function of the other variable, just to explain the parameters that go 
into this functional form. 

At time T=0, if in this equation here I stick in T=0, I have a form that 
looks like this. It is just the cosine function in X. And you can see 
that the amplitude goes from positive A to minus A. And so what you 



see is that this A in front of the cosine, the physical meaning of it is 
just the maximum amplitude. 

If you were given a functional form with a number in front of a cosine, 
well, you could read off the amplitude immediately. The other 
parameter that characterizes this wave is the wavelength. It is the 
distance between two successive maxima or two successive minima. 

And you can also see here that the field is going to be at its maximum 
amplitude whenever this X is an integral multiple of the wavelength, 
lambda, 2 labmda, 3 labmda, or minus lambda, minus 2 lambda or 
zero. 

If you were given a waveform and there was a number in front of the 
X, you can almost, by inspection, tell what the wavelength is. That 
number would be equal to 2 pi over lambda. Now what we are going 
to do is hold X constant and set it equal to zero, and then plot this 
functional form as a function of time. 

Again, we have the cosine function, oscillates from plus A to minus A. 
Now the time between two successive maxima or minima is what we 
spoke earlier of as the period. It is the time for one cycle. In other 
words, is it one over the frequency. 

And you get the maxima then whenever the time is an integral 
multiple of the period, whenever time is 1/N, 2/N, 3/N or -1/N, -2/N or 
0. These are the characteristics of the functional form, amplitudes, 
wavelengths, frequencies. 

Now, I told you that the period was given by 1/N. Let's just do a quick 
proof that the period is actually 1/N, one over frequency. How are we 
going to do that? Well, what I said was the definition for a period was 
the time it takes the wave to move one wavelength. 

If this is the wave at T=0, this then coming up here should be the 
wave at one period later. And so, if we moved over exactly one cycle, 
what this means is that at one period later the functional form ought 
to look exactly like it did at T=0. 

If I take my general expression for the waveform and plug in T=1/N, I 
get this. What you can see at first glance is that it doesn't really look 
like this, or at least not just yet, but we are going to make it look like 
this and we are going to do so legally. 



What are we going do? This just repeats that equation. You can 
already see we have some cancellation here. These two nu's go away, 
so I just have cosine 2piX over lambda minus 2pi. In order to simplify 
this, I am going to need a trigonometric identity, which you may or 
may not remember, cosine alpha minus beta is the cosine alpha times 
cosine beta plus the sign of the alpha sign beta. 

I am going to let 2piX be alpha and beta will be 2pi. I am going to 
plug that in. Here we can see some nice simplification. This cosine 
2pi, of course, is one. The sign of 2pi is zero, this term goes away, 
and what I have left is Acos(2piX over lambda) at T=1/N. 

And, indeed, that is the same functional field as the field at T=0. That 
is our proof that the period is equal to 1/N. Now, this wave also 
propagates in space. It moves. It goes from here to here. 

And another important characteristic of electromagnetic reaction is the 
speed with which it propagates. Let's just quickly calculate what that 
speed is. We have enough information to do that. Speed is always 
distance traveled divided by time elapsed. 

And we said that at T=0 this is what our waveform looked like. We 
also said that one period later this is what our waveform looked like. 
We know at one period that the waveform moved over one 
wavelength. 

The speed is the distance traveled, which is a wavelength, divided by 
the time elapsed, which is 1/N, the period. Therefore, the speed is 
lambda times nu. That is the speed with which this wave propagates. 

And, of course, you already know that all electromagnetic radiation 
has a constant speed of about 3 times 10 to the 8 meters per second, 
or we call it C. And what that is, is the product of the wavelength 
times the frequency. 

The electromagnetic spectrum, of course, is infinitely wide. And here 
is the electromagnetic spectrum. We won't do this in any kind of 
detail, but I just want you to note here that on the long wavelength 
end we have what we call radio waves. 

And on the short wavelength then we have our gamma rays and 
cosmic rays. And, in the case of the gamma and the cosmic rays, 
because the wavelength is small, lambda is small, that means those 
waves have a high frequency. 



In the case of the radio waves, because those wavelengths are long, 
that means those waves have a lower frequency because the 
frequency times the wavelength is a constant. It is this C. It is 3 
times 10 to the 8 meters per second. 

And, of course, right in here, a very small region, narrow region of the 
electromagnetic spectrum are the light waves that are sensitive to our 
eye. What you do need to know is that the red wavelengths are longer 
and the blue wavelengths are shorter. 

Again, the important thing is lambda times nu is always, for every kind 
of radiation, equal to a constant. And that constant is C. Now, the 
other thing that you just need to know is the relative ordering here in 
wavelengths. 

You do need to know that microwaves are longer wavelengths than 
gamma rays. All MIT students should know that. And one other thing 
I might say, because we are going to talk about this a little later in the 
course. 

See these microwaves? Well, molecules will absorb microwaves, take 
it in. That kind of radiation is going to set the molecule rotating. 
Molecules will absorb infrared radiation, and that kind of radiation is 
going to set the molecules vibrating. 

Molecules will absorb visible and ultraviolet radiation. What that is 
going to do is promote an electron to an excited state. Then 
sometimes those electrons, in the excited state, want to relax back 
down to the ground state. 

When they do so they give off radiation. That is the origin of 
fluorescence and sometimes phosphorescence. Then sometimes 
molecules will also fluoresce if they absorb x-rays, but with x-rays, if a 
molecule absorbs them, it also kicks out an electron. 

And we will be looking at that in a few days to identify the energy 
levels in atoms and molecules. This, I think, you are familiar with. So 
far I have just told you what electromagnetic radiation is, how we 
characterize it, speed, frequency, wavelength, maximum amplitude. 

But what I have not shown you yet is any evidence that indeed light 
has wave-like characteristics. And to do that we are going to do the 



experiment that essentially was done to demonstrate the wave-like 
behavior of light, and that is Young's two slit experiment. 

This is the late 1800s. What was done was to take a source of 
monochromatic radiation. We are going to use 6,330 angstroms, 633 
nanometers. It is a helium neon laser. And it is going to impinge on 
just a thin metal plate. 

It does not have to be metal. It can be anything. But what we did 
was poke two holes in it, made two slits. And naively you might think, 
if you looked at a screen out here, that this screen will light up in spots 
that are directly opposite those slights. 

Because, after all, light travels in straight lines. And so if the slits here 
are 0.005 meters apart, you might think that the two bright spots on 
the slit will be about 0.02 inches apart. Well, of course, that isn't the 
case. 

What you really see is an array of bright spots. And Christine has up 
there in the projection booth a helium neon laser that is shinning 
behind two slits. You've got really beautifully now, Christine. 

That is great. And what you see is that there is a whole array of 
spots. There aren't just two spots. There is a bunch of spots here, 
bright spot, dark spot, bright spot, dark spot. You've also got another 
pattern superimposed on that. 

It almost looks like you would see the single slit diffraction, too, on top 
of the double slit, but we won't get into that. But this is not just two 
spots. Let's see if we can try to understand how this pattern arises, 
what this pattern comes from. 

Well, waves have the property of superposition. Superposition means 
that if I take a wave and have it in space, but now I take a second 
wave and put it in the same place in space but make it such that the 
maxima of both waves are in the identical place in space, what I have 
is a situation where the two waves add that property of addition of 
waves -- When they are in the same place in space, that property is 
called superposition. 

That is the property of waves. And in this particular case, we are 
going to have what we call constructive interference. They are going 
to add up such that the amplitude here of the resulting wave is going 
to be twice the amplitude of each of the individual waves. 



This is constructive interference. On the other hand, I can have two 
waves in the same place in space, but they can be positioned so that 
the maximum of one wave is at the same point in space as the 
minimum of the other. 

And because we have these positive and negative amplitudes, well, 
then these are going to cancel when they add up and we are going to 
have the null result. We are going to have no intensity. That is called 
destructive interference. 

Well, in order to understand how this property of interference gives 
rise to these array of bright spots in the two slit experiment, let me 
actually use water waves as an example to try to understand why we 
get this array of spots, or this row of bright spots and dark spots. 

Here is the beach. Here is the water. This is the top view. Here is the 
water. Here is the sand. Here is where I wanted to be all weekend. 
And the waves are rolling in to the shore. There are the wave fronts. 

And then suppose I get ambitious and, for whatever perverse reason, I 
decide to build a barrier to prevent these waves from coming onto the 
beach. Except I poke two holes in the barrier, two little holes. 

Well, you know what is going to happen. When the wave approaches 
that barrier, well, through that little hole a little bit of the wave is 
going to sneak through. And because that little hole is really pretty 
little, what is going to happen is that the wave front is going to spread 
out isotropically. 

And so that wave front is going to look like a semicircle centered on 
that little hole. And, of course, this wave front is going to keep 
propagating. And it propagates out. And then soon enough, a 
wavelength later, another wave sneaks through and I have two semi-
circles. 

And the distance between those two semi-circles is lambda. That is 
the wavelength. That is the wave crest. That is the maximum of the 
wave. Keep going. That propagates out. Keep going. That 
propagates out. 

Well, at the same time that the waves are sneaking out through that 
little hole, waves are sneaking out through this little hole. And I will 
color them green. That wave propagates out and keep propagating. 



The other one sneaks through and keeps propagating. And now let me 
clean up the drawing a little bit. And I am going to call this slit one. 
The green waves are the waves that have come through slit one. 

The blue waves are the ones that have come through slit two. And the 
distance between any two successive maxima here, or any two semi-
circles is, of course, lambda. And lambda is the same for slit one and 
slit two. 

Now, I want you to look at this spot that I just circled right here. Right 
here what do you see? Interference. Absolutely. You have two 
maxima at the same place in space. You are going to have 
constructive interference right there. 

What about this spot? Constructive interference. What about this 
spot? Right. Everywhere along that line you are going to have 
constructive interference. Now, let me just tell you one other thing. 

We have every constructive interference all along this line. Now look 
right at this point here. What you see is you have the superposition of 
the blue wave that has come from slit two, and this blue wave has 
traveled out from slit two a distance four lambda. 

One, two, three, four lambda. That is the radius. It has traveled out a 
distance four lambda. It is constructively interfering with a wave 
coming from slit one that has traveled out a distance three lambda. 

One, two, three. The difference in the distance traveled by those two 
waves that are constructively interfering is one lambda. Let's keep 
going in order to understand this diagram. Let's look at this spot. 

Right here what do you have? Constructive interference. Right here 
you have constructive interference. If you kept going you would see, 
everywhere along this line, constructive interference. Now let's look at 
the difference in the distance traveled by the waves that are 
constructively interfering along that line. 

Well, you see the green wave here? The wave that is constructively 
interfering is one that has traveled out a distance two lambda. That is 
R sub one is equal to two lambda. It is interfering with this wave front 
that has traveled out a distance four lambda. 



The difference in the distance traveled by those two waves is two 
lambda. 4 lambda minus 2 lambda equals 2 lambda. I think on your 
notes, it is actually this case that I have written it down. Here is 
another point of constructive interference. 

Here is another point of constructive interference. Everywhere along 
this line we have constructive interference. And, if you analyze this, 
the distance in the distance traveled would be zero. What you would 
expect, if you were to image this, right here very bright spot, very 
bright spot, very bright spot. 

This is going to be symmetric around the center, so there will be a 
bright spot out here, a bright spot out there. Let's look at this actually 
in real life in a water tank. There we go, up here on the side boards. 

Here are the waves coming this way onto some barrier, and here are 
the holes. Here is one hole. Here is the other hole. And then these 
bright semi-circles are the wave fronts. And what I want you to 
notice, and you have to kind of look out here, right there you see a 
whole bunch of very bright spots. 

Well, if this were light and we had a screen then right here we would 
see the screen light up. And then right here you see kind of nothing. 
That nothing is destructive interference. That would be a dark spot if, 
in fact, this were light and we were looking at a screen. 

Then here is another very bright spot. Here is another very bright 
spot. This is on a website from the University of Colorado, which, if 
you are not familiar with, is actually kind of a very neat website. 

It has some very elementary topics in it, but it also has some topics 
that even you would be interested in. And that is actually the name of 
the website. And so what is going on here, in the case of the light, is 
just what we have explained. 

We've got this line of constructive interference that is going to result 
on the screen as a very bright spot. And then another line with 
another bright spot and another line with a very bright spot. 

And this is symmetric around the zero. Right at this point we have 
constructive interference. In between we have destructive 
interference. Constructive, destructive, constructive. And that is the 
origin of the many different bright spots. 



And now there is a condition that has to obtain in order for there to be 
maximum constructive interference, and that is this condition. The 
difference in the distance traveled of the two waves that are 
interfering to give us that maximum constructive interference has to 
be an integral multiple of the wavelength. 

I will explain this a little bit more starting on Wednesday. OK. See 
you then. 


