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5.112 Principles of Chemical Science, Fall 2005 
Transcript – Lecture 25 

Over on the side board here, I want to show you a few representation 
of the ethylene molecule that we were talking about at the end of last 
hour. 

When you see representations of molecules that appear throughout 
your textbook, as well as in this class, I want you to see if you can 
recognize just what property of the molecule it is that is being 
represented. In this case here, we have arbitrary sized spheres that 
represent the two carbon atoms and the four peripheral hydrogen 
atoms. And then what I have plotted around it is a see-through 
representation of the electron density at a particular isosurface value 
of 0.1 electrons per unit volume. So, that is a representation. And we 
are going to be seeing a number of different kinds of representations, 
and you will need to be able to distinguish between them. And, in 
particular, we were talking last time about different kinds of 
bonds. We talked about sigma bonds that were cylindrically 
symmetric about the internuclear axis of the two atoms that are 
bonded together. 

And we also talked about pi bonds. And I brought up the pi bond in 
connection with the ethylene molecule that we were just looking at, a 
different representation of. And so, now let me show you what a pi 
bond can look like. Here is a representation of the ethylene molecule. 
Again, I have arbitrary sized spheres that show us just where the 
nuclear positions are in three-dimensional space. 

So, we are talking about the equilibrium geometry of the ethylene 
molecule. And what you see here is that if the molecule is lying in the 
xy plane then each of these carbons has a 2pz orbital that has a 
positive lobe and a negative lobe respectively above and below the 
plane of the molecule. 

And so, normally, when we talk about atomic orbitals, we can 
reference their phase as either positive or negative. And we often, in 
representations like this one, associate the positive phase with one 
color, here blue, and the negative phase with a different color, here 
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yellow. I can choose whatever colors I want for those, but this is also a 
type of isosurface. 

And it represents the in-phase side-to-side overlap of the positive 
above the plane lobes of the carbon 2pz orbitals and the negative 
lobes below the plane of the carbon 2pz orbitals experiencing side-to-
side overlap. And so, you see the two electrons that could be paired 
up, spin paired, one spin up, one spin down in this pi bond are 
smeared out both above and below the plane 

But there is no contribution at all to the electron density in the plane 
from an orbital like this. When we looked at electron density 
isosurfaces, as we have done a few times in this class, what we are 
looking at there is an isosurface corresponding to all of the electrons in 
the molecule. And here what we are looking at is an orbital that can 
house just two electrons, one spin up and one spin down, so we are 
focusing our attention on a function that involves just two electrons 
bonding in a pi bond that has, as a nodal surface, the plane of the 
molecule. 

The plane that contains all six of these nuclei, the two carbons and the 
four hydrogens. We talked about nodal planes last time. And the issue 
of nodal planes, nodal surfaces is going to be very important in today's 
lecture. Let's go over here and start talking about hybridization. 

On this board last time, I gave you kind of a timeline where we talked 
about contributions to different aspects of electronic structure theory 
for molecules by different people, some of who were recognized with 
Nobel Prizes, others who were not. 

And one of those people, namely Linus Pauling who run two Nobel 
Prizes, not both in chemistry, came up with this idea of hybridization 
to solve one of the problems associated with atomic orbital 
nodes. And let me work on this and illustrate this to you by taking a 
pretty simple molecule that has only four atoms. 

And this molecule is one that, in fact, we have seen before. It is an 
example of a Lewis acid, so any discussion of electronic structure of 
this BH3 molecule better come out with a description of why it is a 
Lewis acid. But let me now point something out. That is, if I make the 
direction that coincides with this top BH bond, the x-axis. 

And in the plane of the board, the y-axis perpendicular to it, as shown. 
And then, of course, the z-axis coming perpendicularly out of the plane 



of the board. Linus Pauling recognized a problem. And let me give 
these hydrogens descriptors. I will make this one A, this one labeled B 
and this one labeled C. 

And the problem is that we have a pz orbital with one positive lobe 
coming out of the plane of the board up here. This would be where 
the blue lobe is. And the yellow lobe would be back behind the plane of 
the board analogous to the pi bond that we just looked at up on the 
screen. And what you will see is I can draw it this way. I am rotating 
this planar BH3 molecule. 

That allows me to draw the pz orbital in a way that you can visualize. 
And the observation that I want you to take away from this drawing is 
it has to do with the relationship in space of the three hydrogen nuclei 
to an important property of the 2pz orbital. 

What we can say is that these three hydrogens, A, B and C reside in 
the nodal plane of the 2pz. 

They lie in the 2pz nodal plane. 

That is, the 2pz on the boron. And the wavefunctions that these 
hydrogens bring into the problem of the electronic structure of the BH3 
molecule are spherically symmetric. They are simple 1s orbitals. And 
so, if you draw one of them here, remember that a 1s orbital is 
spherically symmetric. 

You can see that any positive reinforcement that would occur by 
overlap here is equal and opposite to the negative reinforcement that 
will occur down here. And this is something that is true whenever a 
hydrogen s orbital lies in a nodal plane. There is no net overlap--

--between the boron's 2pz and the hydrogen 1s orbitals. When we try 
to describe the bonding in this molecule, we cannot have any bonds 
that involve 2pz and any of the three hydrogen 1s orbitals because 
there is no net overlap between them. 

Because those spherically symmetric orbitals lie in the nodal plane of 
2pz. And that means further that we need to form three in-plane 
bonds. 

And that is the xy plane in plane bonds. 

And these three bonds must be equivalent. 



And what is interesting about the fact that they must be equivalent is 
that what are the three orbitals that the boron has that are in the xy 
plane, the three valence orbitals? 

There is the 2s, the 2px and the 2py. Three orbitals that are not 
identical to one another, yet we need to make three identical bonds 
because all the studies that we do on the BH3 molecule tells us that 
each of these bonds are the same length, the molecule has the perfect 
symmetry of a Mercedes Benz symbol, its trigonal planar. 

It has this three-fold rotational symmetry to it. And so somehow, 
using a 2s, a 2px and a 2py, we need to make three equivalent bonds. 
This is an energy level diagram. And so, Pauling came up with the idea 
of promotion. And promotion will correspond to the following. I can 
draw 2px, 2py, 2pz and 2s. 

And I can populate with electrons. The boron atom has three. Now I 
have put in three electrons into this energy level diagram for the boron 
atom. 

And now this concept of promotion kicks in--

--and reorganizes us electronically as follows. 

According to our discussion, we need three equivalent orbitals down 
here with the three electrons in to pair up with the three electrons that 
come into the problem from the three hydrogen atoms. 

At the end we will show how those electrons form the hydrogen atoms 
come in and pair up with these three electrons on a promoted boron 
atom. Up here we have the boron 2pz orbital. That stays by itself. And 
down here we are going to have a set of sp2 hybrids. 

The idea is now somehow we are going to get three orbitals down here 
by mixing one part S and two parts P. And, if we do this correctly 
mathematically, these will have the right orientation in space to be 
hybrids that have proper directionality for good overlap with our 
hydrogen 1s oribtals. 

These are going to be three equivalent hybrids. 

How do we do that? Well, we are going to get our equations for 
hybridization. 



And we are going to develop these using some of the results from 
quantum mechanics, with is what Pauling did. 

And essentially what we are going to do is seek equations that have 
one part s and two parts p, each of them, but which point in the 
correct directions in space for making three separate two electron 
bonds between the boron and the three hydrogens. 

And so, I will just call them sp2 of A, because we are going to need 
one that points toward that A hydrogen which is along the positive x-
axis, we are going to need one that points toward the B hydrogen and 
we are going to need one that points toward the C hydrogen. And the 
idea here is that we are going to have some amount of the boron 2s, 
px and py. 

Because pz is not contributing to these three hybrids. And each one of 
these is going to have some quantity of the three orbitals that we have 
available. And what you need to keep in mind here in setting up 
equations like this is that px has a definite spatial orientation with 
respect to the coordinate system that we have chosen. 

And so does py. And the way that we will make this come out using 
our blue chalk is to note that we have a coefficient C1, C2 and 
C3. Our job is going to be to find the values of these coefficients, C4, 
C5, C6, C7, C8 and C9. 

We can use the rules of quantum mechanics, and I am going to 
summarize a few of these rules for you before this lecture ends, to find 
the values of these constants. Let's go over here and begin. 

Let's make note of the dictates of symmetry. I will reference symmetry 
a couple of times today in class in working on this problem of finding 
those coefficients one through nine. The neat thing is that the 2s 
orbital centered on that boron, which is going to be participating in 
these hybrids that are going to point toward hydrogens A, B and C, 
that 2s orbital is spherically symmetric. Its wavefunction is the same 
as you go radially out from the boron center in any direction into 
space. 

What that symmetry consideration dictates is that there will be the 
same amount of boron 2s in the hybrids for A, as for B, as for C. And 
what that means is that C1 is equal to C4 is equal to C7. 



And we are going to need a value for this. And we can get a value for 
that by taking into consideration something called unit orbital 
contribution. 

What that says is that we have to use the boron's 2s orbital completely 
and identically once in that set of three equations. In other words, we 
are going to distribute it evenly among those three hybrids. And we 
have to distribute all of it evenly among those three hybrids. And here 
we are going to be interested in the square of the coefficients. And 
that is because when we talk about atomic orbitals we know that the 
probability of finding an electron in that orbital is related to the square 
of the wavefunction. 

And so, normally when we plot orbitals, like I just did with the pi bond 
of ethylene a few minutes ago, we are making an isosurface that 
corresponds to some percent probability of finding the electron at that 
point in space. So, we are interested in probability distributions. And 
these are related to the square of the wavefunction. Here, for unit 
orbital, we are going to say that C1 squared equals C4 squared. 

Sorry, plus C4 squared plus C7 squared is equal to one. And, 
therefore, C1 is equal to C4 is equal to C7 is equal to one over root 
three. Now we have found C1, C4 and C7. And, if we are going to 
complete sp2 of A, get this first hybrid of the three, I am going to go 
across this way. 

I just went down one, four and seven and pointed out that by the 
symmetry of the s orbital and due to the fact that the s orbital 
contributes once, unit orbital contribution, we could get C1, C4 and C7 
equal to one over root three. Now I am interested in C2 and C3, so 
let's draw a little picture. 

This, remember, is our 1s orbital on HA. And what we are trying to do 
is to construct a hybrid focusing on that top equation that will be 
directed at HA. And we are keeping our axes the same as before so 
that x points up and y goes to the left, as I am drawing it here. 

And z would be coming out at us. What I am going to draw now is a 
picture of the boron's 2py orbital. And, as I usually do, I am taking 
the convention that the negative phase lobe of the boron's 2py orbital-
-

Negative is shaded. That is my convention. That 2py orbital lies in the 
xy plane and points along y. Its positive lobe, in fact, points along 



positive y. Its negative lobe points along negative y. And what can we 
say about the relationship of HA1s orbital to the 2py orbital of that 
central boron atom? 

Let me phrase it this way. The 2py orbital of our central boron atom 
has a nodal plane? What is that nodal plane? xz is a nodal plane of the 
2py orbital right here. Just like this. And so, what you see is that this 
HA is not only in the nodal plane of 2pz, it is also in the nodal plane of 
2py. 

And that means any positive interference by bonding between HA's 1s 
and the positive lobe of 2py would be exactly canceled by the equal 
and opposite negative interference between a hydrogen's 1s orbital 
and the negative phase lobe on 2py. And that means that we know 
the value of C3. 

We can say, therefore, C3 is equal to zero. That is really cool because 
now we are going to be able to bring in one more consideration and 
complete the formula for sp2 of A. 

We are going to be able to use the normalization condition--

--which tells us that C1 squared plus C2 squared plus C3 squared is 
equal to one. 

Once we formed this new hybrid by mixing together S and P wave 
functions, we are going to find that this normalization condition must 
be satisfied for the hybrid orbital just as it is satisfied for these atomic 
orbitals. That is so that the probability of finding an electron 
somewhere is space associated with this hybrid wavefunction is one, if 
there is an electron in this orbital. 

That is where this comes from. And we know that C3 squared is 
zero. C1 squared is one over root three. So, we know that sp squared 
of A is equal to one over root three. And then we can say that, by 
virtue of this and the fact that C3 is zero, C2 could be equal to either 
plus or minus the square root of two over three. 

And we have to figure out which one of these to use. Remember that 
C2 is the coefficient on px. Let's reference our diagram on our 
coordinate system. We have our x-axis and our y-axis. 

And we are looking for the sign of the coefficient on the boron 2px 
orbital. That is our C2 coefficient. And I am shading negative here. 



And, in order to overlap constructively and form a bond to the 1s 
orbital of HA, we want positive as our coefficient. 

Because that is going to make the same phase lobes interact in a 
sigma fashion. We know that sp squared of A is equal to one over root 
three times the boron's 2s orbital plus the square root of two over 
three 2px orbital. 

And now that we have the coefficients on that hybrid orbital, we can 
draw a picture of what that is. That is equal to taking the boron 1s 
orbital here and adding to it the 2px orbital that looks like this. This is 
the conceptual breakthrough that Pauling made. 

You could mix atomic orbital wavefunctions located on a central atom 
in order to generate these hybrids that have the proper directionality 
for good overlap with the peripheral atoms that bond to the central 
atom. And when I do this what you can see is that we are going to get 
constructive interference with the positive lobe and destructive 
interference with the negative lobe when we add this boron 2s orbital 
to the boron 2px orbital. 

And that should give us something that looks like this, with an 
enlarged lobe pointing along positive x and a diminished negative node 
pointing along negative x. That is our hybrid. We have developed 
some coefficients here. We just got it pictorially, and here we show 
you the picture of the hybrid. And then we need to continue. 

We need to use the remainder of our 2px orbital. One thing we cannot 
do in constructing a set of hybrid orbitals from a set of atomic orbitals 
is forget to use part of our orbital. 

We need to use all of the orbital that we are given to construct these 
hybrids with. And what that means is we have now a relationship 
between C5 and C8, because we now know C2 is plus root two over 
three. Let's use this orbital idea and reference to px. 

And say that C2 squared plus C5 squared plus C8 squared, these are 
all the coefficients that deal with the px contributions to these three 
hybrids, is equal to one. And we know C2 squared is equal to two-
thirds. 

And now let's draw a picture to help us figure out something else 
about C5 and C8. Here I am simply representing, with the same 



coordinate system that I am using throughout, the boron atomic 
orbital that is the 2px orbital. 

And, if I consider down here the s orbitals on HA and HB, I can say 
something about the way in which 2px interacts with HA as compared 
with the way in which it interacts with HB. Notice that these HA and 
HB atomic positions are mirror images of each other with respect to 
this 2px orbital in the middle. 

That tells us that C5 must be equal to C8. We are using symmetry as a 
mathematical argument here to say that C5 is equal to C8. Therefore, 
we can figure out exactly what C5 and C8 are because we already 
know that C2 squared is two-thirds. 

We know that C5 squared plus C8 squared has got to be equal to one-
third. And that means that C5 is equal to C6, sorry, C8, which is equal 
to one over the square root of six. 

Because we put this in here, we will get a sixth plus a sixth, two-
sixths, which is one-third plus the two-thirds, which will be one. And 
so, we know it is one over root six. However, it could be a positive or a 
negative. And we need to figure out just which it is. Is it positive or is 
it negative here? And I will come back to that issue just in a moment 
when we draw these functions. 

But notice that these are the coefficients on 2px and the positive lobe 
points up toward HA. We are going to need it to be flipped around and 
be pointing down if we are going to form bonds to HA and HB. So, that 
will dictate the sign here as negative one over root six. We do not 
have yet the complete equations for sp2 of B and sp2 of C because we 
need C6 and C9. 

Let's see how we can get those. 

C6 and C9 relate to the py orbital that is oriented like this with 
reference to our coordinate system with the negative phase shaded as 
follows. And specifically C6 relates to the interaction with this HB 
down here. 

And C9 relates to the interaction with the 1s orbital on HC down here 
on the lower right. And because this py orbital charges phase as we 
pass through the origin, and we want the positive phase to match up 
both with HB and with HC in the contributions to the hybrid 



wavefunctions, we are going to know, and by the symmetry of this 
problem that these are negative mirror images of each other. 

So, we know that C6 is equal to negative C9. And if we put that 
together with unit orbital contribution we can see, because we know 
that we have our sp2 of B and sp2 of C, both of them have one over 
root three of the 2s contributing. 

And then we are looking for six and nine. We found out over there 
that both of them have negative one over root six as the coefficient on 
px. 

And then we know that since this is the one that points to B we do not 
need to flip the phase on py to get a bond forming between py and 
HB. This is going to be a positive and then this one is going to be a 
negative for the reasons I just mentioned that we are going to need to 
flip that py contribution to sp squared of C, as compared to sp squared 
of B in order to get this positive lobe over here interacting with HC in 
that function. 

I am going to draw these functions in just a moment. But now, when 
we note that normalization requires that the sum of the squares of the 
coefficients B equal to one, and we know that C3 was zero so that 
there is no contribution at all of py to sp squared of A, and all of it 
must be here and here, that means that our coefficient is one over 
root two of py. 

Using these restrictions from quantum mechanics, we actually have 
coefficients on the spx and py orbitals that show how they go 
together. And the way in which these add up is similar to what we 
have seen over here. It is a little more complicated because both px 
and py contribute. 

Let me show you what they look like. This mathematical manipulation 
of these functions produces linear combinations that all three look the 
same as the symmetry of this problem would dictate. It is a three-fold 
symmetry type of problem. And this is our sp2 orbital pointing toward 
B with this mathematical form. 

We have to flip around px so that the positive lobe of px contributes 
down here. We do not have to flip py. And we have different amounts 
of px and py in this hybrid wavefunction. But the math of the atomic 
orbitals guarantees that this form would be physically indistinguishable 
from this one over here. 



They would look exactly identical if I plotted a probability density 
isosurface. These two-dimensional pictures that we draw on the board 
are like slices through three-dimensional probability density 
isosurfaces. That is what these representations are. And then we note 
that the py orbital is flipped around when we form sp squared of C. 

And that leads to this appearance. 

I would like to show you what one of these might look like if you 
calculated it from the math that we have developed here. 

I have actually got more work to do here in the next five minutes, so 
let's keep our concentration. Look at this orbital. 

This thing is a beautiful hybrid orbital. And I have calculated this with 
reference to a particular arbitrary molecule. This was calculated with 
reference to the water molecule. The positions of the nuclei in the 
water molecular are indicated by these arbitrary sized spheres. That is 
a typical ball and stick representation of a molecule in 3D. You can see 
that the oxygen of the water molecule is colored red in there. That is 
arbitrary. And then we have the hydrogens in white. 

And then I have a big positive lobe in blue here and then a smaller 
yellow lobe that is our negative lobe on this orbital here, which is an 
ad mixture of an s orbital with a p orbital. I am not telling you the 
actual coefficients that went into this particular hybrid, but you can see 
how if I were to take a two-dimensional slice along the long axis of this 
hybrid orbital, it might look something like what we have drawn over 
there. 

Namely with one nice large directed lobe that can have good overlap 
with a hydrogen 1s orbital in order to give rise to a good two electron 
bond between hydrogen and boron. And let me illustrate how that 
impacts on how we draw our energy-level diagram for the BH3 
molecule. What we have now is a situation in which, as you go up in 
energy, you find three orbitals that are all at the same energy. 

These lines indicate places where we can put electrons. And, in fact, 
they look like this. 

They represent positive interference up along x. 



Positive interference between a sp2 hybrid that points down at atom B. 
Right here overlapping nicely with the hydrogen 1s wavefunction that 
is sitting out there surrounding that nucleus. And then over here is 
our hybrid orbital sp squared of C that points down here and interacts 
with the hydrogen 1s orbital on atom C. 

And so, the idea is now this system, BH3, has a total of six valance 
electrons. Valance shell electron pair repulsion theory could be used 
by you to predict the geometry that we started with for this problem. 
But now we can populate these bonding orbitals with electron pairs, as 
shown here. And then this problem has one more aspect to it, namely 
that up here somewhere higher in energy there is a 2pz orbital on the 
boron that is empty. And this empty orbital--

--is our feature that gives this molecule Lewis acid character. We 
know that this is an electron deficient system. It does not satisfy the 
octet rule. 

And, specifically, where it is missing electrons are in that boron 2pz 
orbital. That allows you to predict something about the 
stereochemistry of reactions, for example. It says that if some 
nucleophile or Lewis base, a source of a pair of electrons is going to 
come in and approach that planar BH3 molecule, it will do so either 
along positive z or along negative z because that is where the big 
lobes are of that empty pz orbital point. 

And this valance bond theory--

--satisfies this problem, that Pauling noticed, of how do we make three 
identical bonds in a plane that contains three dissimilar atomic orbital 
wavefunctions, an s orbital px and a py? 

Well, he found that mathematically you can mix them together in ways 
that gives you three identical hybrids that have the needed 
directionality for the forming of these three two electron bonds. There 
is an alternative solution to this problem, and we will call that 
molecular orbital theory. Don't forget about Robert S. Mulliken, MIT 
undergraduate thesis 1917. And MO theory is a different perspective 
on electronic structure theory for molecules. 

And we will launch into that on Wednesday. 


