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5.112 Principles of Chemical Science, Fall 2005 
Transcript – Lecture 15 

Last time we started talking about the internal motions of molecules, 
the vibrations and the rotations. 

And we talked about how the different ways in which a molecule can 
store energy were called modes. 

Or, sometimes called the degrees of freedom. And so, in general, if we 
have a molecule that has N atoms, it has 3N degrees of freedom or 3N 
modes. 

And we said last time that three of those 3N modes are always 
translational modes. 

We live in a 3-dimensional universe, so there are three translational 
modes, three directions in which the molecule can travel, can move. 

And, therefore, if we use three of these 3N modes for translation then 
we have three minus three modes that are internal modes, internal 
degrees of freedom. 

And that is what we really want to start looking at today. 

On the diagram here, on the side, here is our N molecule. There are 
3N total modes. I just said three of them were translational modes. 

Now, how do we separate those remaining modes between rotation 
and vibration? The way we do it this. 

If you have molecule that is linear you always have two rotational 
modes. I will show you that in a moment. Linear molecules always 
have two rotational modes. Nonlinear molecules have three rotational 
modes. 

Therefore, if we use, in a linear molecule, three of them for 
translation, two of them for rotation, the number of vibrational modes 
are what is left over. 
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For a linear molecule, we have 3N minus 5 vibrational modes. If we 
have a nonlinear molecule, since we have three rotational modes in a 
nonlinear molecule, we have leftover 3N minus 6 vibrational modes. 

Now, let's take a look at this a little bit more in detail. 

Let's start with nitrogen. Two atoms. Six modes total. Three 
translational. Two rotational modes of nitrogen. 

What are those rotational modes? Well, here is our nitrogen. And one 
of those rotational modes is going to be rotation about an axis in the 
plane of this board and its rotation around this axis. 

That axis goes through the center of mass of that molecule. That is 
one of the rotational modes. 

Another rotational mode is rotation around an axis here that is 
perpendicular to the board. This is another rotational mode. 

It is going to turn out that these two rotational modes are degenerate, 
meaning they are going to have the same frequency of rotation. They 
are going to have the same energy. We will talk about that in a 
moment. 

What I want to point out here is that if you look at the axis here in the 
plane of the board that is along the bond axis, you know what, this is 
not a rotational mode because there is cylindrical symmetry around 
that bond axis. 

It has no meaning rotation around that bond axis. The molecule looks 
the same for all of the angles from zero to 360 degrees. 

That is not a rotational mode. Linear molecules, diatomics, you have 
two rotational modes. 

They are going to turn out to be degenerate, as we are going to see. 
And then our table over there says for nitrogen we ought to have one 
vibrational mode. And we do. 

That one vibrational mode here is the nitrogen-nitrogen stretch. 

It is a stretch mode. We said last time that these bonds function like a 
spring. The molecule can stretch, the molecule can compress. We are 
going to look at that in more detail in just a moment. 



Next, in our table over here, let's look at CO2. CO2 has three atoms. 
Nine total modes. Three of them are translation. 

CO2, even though it has three atoms in it, is a linear molecule, so it 
has only two rotational modes. 

Let's look and see what those two rotational modes are. One of those 
rotational modes is, again, rotation around an axis in the plane of the 
board here around the center of mass of that molecule. 

That is one rotational mode. 

The other rotational mode is around an axis perpendicular to the board 
here. That is a second rotational mode. These two modes are going to 
be degenerate because they are actually the same motion, just in a 
different plane. 

These are degenerate. 

And then, again, just to emphasize, if you think that you have a 
rotation here along that linear bond axis, well, the answer is no, this is 
not a rotational mode. So, we have two rotational modes for CO2. 

And now what does our table say in terms of vibration? 

Well, in terms of vibration for a linear molecular, 3N minus 5, we have 
used now five modes. We have four left, 3N minus 5. What are those 
modes? 

One of these modes is what we call a symmetric stretch. 

A symmetric stretch means that this oxygen and this oxygen are 
simultaneously stretching or are simultaneously compressing. 

My body is the carbon and my arms are the oxygen. A symmetric 
stretch is the oxygen both moving in or both moving out. 

That is one vibrational mode, this symmetric stretch. That is one 
vibrational mode. 

What is another vibrational mode? Well, if you have a symmetric 
stretch, it must mean you have an anti-symmetric stretch. 



In this case, we have one oxygen moving out while the other oxygen 
is moving in. 

And this carbon is kind of moving in like that, too. Or, this one is 
moving in, this one is moving in, this one is moving out. That is the 
anti-symmetric stretch. If my body is the carbon and my arms are the 
oxygen, this is the anti-symmetric stretch with the carbon moving just 
a little bit to the side, too. 

The anti-symmetric stretch, another mode. 

These two modes are not degenerate. They have different frequencies. 
They have different energies. We will see that in a moment. 

What are the other modes? Well, the other modes are a bending 
mode. 

What can happen is that this oxygen and this oxygen can move in, and 
this carbon will kind of move out. 

Or, of course, the other way here. These go like that, this goes like 
that, or that goes like that. This is a bending vibration. 

Again, if my body is the carbon and these are the oxygens, the 
bending vibration looks like this. 

That is the bending vibration. 

However, you could also imagine that you have a bend in another 
plane. In other words, you can imagine that these two oxygens here 
are coming out at you or going in at you. 

And so, in other words, if I am the carbon, these are the oxygens. 

We also have a bend like this. These two bending vibrations are 
degenerate. These are four different vibrations. They are the four 
vibrational modes, two bending, one symmetric stretch and the other 
the anti-symmetric stretch. 

That is what we have in CO2. 

What about another molecule? How about water? We have three 
atoms. Again, nine total modes. Three of them are translation, but 



now water is not a linear molecular. So, we are going to have three 
rotational modes in the case of water. 

Let's look at what those three rotational modes ought to look like. 

Here is our water molecule. One of those rotations is, again, a rotation 
around an axis here in the plane of the board. That is one rotational 
mode. 

If I am the oxygen and my hands are the hydrogen, this is a rotational 
mode. 

You got that? OK. And then another rotational mode here. It can be a 
rotation around the center of the mass centered on the oxygen here. 
Axis perpendicular to the plane of the board. This is that rotation. 

And I am sorry but I cannot do cartwheels. 

That is one rotational mode. And then a final rotational mode involves 
rotation now around this axis. It is an axis perpendicular to this one 
but in the plane of the board. 

And this is a rotational mode. We have three rotational modes. This 
one requires me to do some flips, which I am also not going to do. 

But each one of these modes has a different frequency, has a different 
energy. 

And you can see we have three of them now because we no longer 
have a linear molecule. We have three rotational modes. Now, what 
about the vibrations for water? Well, you can see from our graph up 
here that 3N minus 6, in this case for water, is going to be three 
vibrational modes. 

Let's look at that. 

One of those vibrational modes is a symmetric stretch, again. 

The hydrogen is moving in or both moving out at the same time. 

A picture of the symmetric stretch is, again, I am the oxygen, arms 
are the hydrogen. This is the symmetric stretch, right? And then, if 
there is a symmetric stretch, there is going to be an anti-symmetric 
stretch. 



What that means is one of the hydrogens is moving in and the other 
one moving out. 

Or, this way. Of course, a picture for that is this kind of a motion. You 
get the idea. Anti-symmetric stretch. 

And then, finally, we have a bending mode. 

A bending mode meaning these hydrogens moving this way or those 
hydrogens moving that way. And, of course, a picture for that is this. 
That is a bending mode for the hydrogens. 

We have three vibrational modes for the hydrogen. 

Now we are going to look at some of the principles behind these 
internal degrees of freedom. But, of course, the other reason for telling 
you about this, did you have a question? 

I can, but it is not a separate mode. 

That is correct. That is right. It looks like a rotation, actually. That is 
absolutely correct. 

The other reason for talking about this is to tell you that each one of 
these vibrations or rotations occurs at a frequency at an energy that is 
characteristic of the molecule. 

If we had a way to actually measure the frequency of these vibrations 
or the frequencies of the rotations, well, then we have a great tool for 
identifying what kind of molecule we have. 

Analytically, this is a wonderful technique for identifying ultimately the 
molecule that you have if you can measure those frequencies of 
vibration or rotation. 

And we are going to do that in just a moment. But what we also have 
to understand, before we go and measure these frequencies, is that 
the energies with which a molecule vibrate or rotate are quantized. 

So, that is what we have to spend some time thinking about right now. 

Let's do that. 



And we are going to start with vibration. 

To illustration this, I am going to draw one of these energies of 
interaction again, one of these curves that we have been talking 
about. 

And I am going to set my zero of energy at the dissociated atom limit. 
So, I am going to talk about H plus Cl. And, of course, we talked about 
this being the equilibrium bond length, r sub e, for the HCl molecule. 

That is the energy of interaction. 

I am going to now draw in the ground vibrational state of HCl which I 
am going to represent as a line. It is going to be the energy. There is 
the ground vibrational state of HCl. 

The ground vibrational state, that energy is characterized by a 
quantum number. 

The quantum number is the vibrational quantum number for the 
ground vibrational state. The vibrational quantum number is v equal 
zero. What this line represents is the ground vibrational energy. 

It also represents the extent to which the molecule's bond stretches 
and compresses. 

The bottom line here is that the bond stretches up to here. The inner 
section of this line with the interaction energy here represents the 
maximum distance of the bond, the maximum bond length, the most 
that the bond stretches. 

R is going this way. 

The inner section of this energy with this curve represents the closest 
that the two nuclei get. This represents the most that the molecule has 
compressed. This is the smallest value of r. That is what the diagram 
represents. 

If you start out here with an HCl molecule at the equilibrium bond 
length right here, what happens is that the HCl will stretch, and it will 
stretch to this position. 

This is an exaggeration. This is how much it stretches. And then it 
comes back and goes through the equilibrium position. 



Over here, and this is another exaggeration, this is how close they get 
to each other. 

This is how much they compress. This point is often called the inner 
turning point. Inner because it is the smallest bond distance. This is 
often called the outer turning point because it is the larger bond 
distance. 

It is outer because it is at this distance now that the bond turns 
around and begins to compress. 

This HCl molecule here is vibrating, equilibrium position. Then it goes 
to the maximum extension, comes back through the equilibrium 
position and then goes to the maximum compression, comes back to 
the equilibrium position. 

That is what this line literally represents. 

It is also the energy, which I will explain a little bit more in just a 
moment. So, this molecule is vibration from here to here to here and 
back and forth. 

Now, what I also want to point out to you is something that I have 
been kind of misleading you about for the last few weeks. That is this 
molecule is not sitting in the bottom of this well. 

Remember that when we were drawing bond association energies, I 
was drawing it from the bottom of this well to the dissociated atom 
limit? I told you this was delta E sub d. 

Well, the bottom line is that it is not really correct. The reason is 
because the molecule is never really sitting at the bottom of this well. 

It is sitting this much above. It is sitting at the v equal zero state. 

It is not sitting at the bottom of the well. If it were, it would not be 
vibration. If it is not vibration, it will violate the Uncertainty Principle, 
something we didn't talk about. 

But the bottom line is that it cannot sit at the bottom of the well. 

It is always vibrating by about this much energy. When you have 
experimentally determined dissociation energy for the bond energy, 



the experimentally determined energy is actually the energy from this 
level. 

From v equal zero up to this dissociation limit. 

This is the experimental bond energy. Because, if you are going to 
measure a bond energy in the laboratory, well, you can only measure 
it from the lowest level at which that molecule can possibly be at. 

It is not at the bottom of the well. 

The difference between where this level is and the bottom of the well 
actually has a name. That difference is called the zero point energy. 

And I will explain that in a moment when we look at the energies a 
little more carefully. 

Now, just for completeness and this is not something that you have to 
know, let me tell you what the nomenclature usually is here for these 
well depths. 

The nomenclature from the bottom of the well to here, which is not 
experimentally measured, is usually d sub e, dissociation sub e. 

From the v equal zero level to the dissociation limit, that energy here 
is d sub zero. 

You don't have to know these, but I just want to tell you when you see 
that. All dissociation energies experimentally measured are measured 
from here to here because that is the lowest energy the molecule can 
have, is being in the v equal zero ground vibrational state. 

Well, now let's take a look at the energies a little more carefully. 

Here is our favorite diagram again, our intermolecular interaction 
potential. 

This is HCl, so here is the dissociated atom limit. This is v equal zero 
right in there. Now, there is an excited state for the HCl, or for any 
molecule. 

V equal one is the first vibrationally excited state. 



V equal two is the second vibrationally excited state. V equal three is 
the third. V equal four is the fourth. V equal five is the fifth. These are 
the allowed vibrational energies. 

In other words, the molecule can vibrate with this energy or this 
energy or this energy, but not some arbitrary energy like right in here 
or like right in there. 

These are the allowed vibrational states. And we have a nice analytical 
expression to describe those energies. That analytical expression is 
right here. 

That energy is h times nu times that vibrational quantum number plus 
one-half. 

So, v is that vibrational quantum number. This nu here is the 
fundamental frequency, which is the frequency with which the 
molecule vibrates. It is the frequency with which that molecule 
stretches, comes back to the equilibrium position, compresses and 
comes back to the equilibrium position. 

It is the number of cycles per second that molecule makes. 

So, nu is the number of cycles here that the molecule in v equal zero 
makes per second. Stretches, compresses and back to the equilibrium 
position. Notice it is also the vibrational frequency of v equal one. 

The vibrational frequency does not depend on the vibrational quantum 
number. 

You see no dependence of the vibrational quantum number on the 
frequency. V equal two vibrates with the same frequency. V equal 
three. V equal four. V equal five. All of these states have the same nu 
here, have the same fundamental frequency. 

What does that mean? That looks a little strange in the sense that if 
you have a molecule in v equal zero, the number of cycles per second 
that it makes is the same as a molecule in v equal five. 

Well, you can see that in v equal five the molecule has to stretch 
further and it has to compress further. It has to travel more distance. 

And so, if it has to travel more distance but it still carries out the 
number of cycles per unit time, the same as v equal zero, well, then it 



must mean that the molecule in v equal five is moving more quickly, is 
moving faster. 

And that is what that means. The energy of this state is higher. It is 
moving faster. 

But it is moving with the same frequency nu. That is the fundamental 
frequency. That fundamental frequency, of course, is in hertz, our unit 
for all frequencies here. 

Now, I drew on the board and called this energy from the bottom of 
the well to v equal zero the zero point energy. That is what it is. 

But numerically what that energy is, is one-half h nu. Stick in v equal 
zero, you get one-half h nu. 

This energy here is measured from the bottom of this well. It is 
important that you understand where this energy is measured from. It 
is measured from the bottom of this well. V equal one, you put that in 
here and get three-halves h nu. 

V equal two, you get five-halves h nu. V equal three, you get seven-
halves h nu. The other thing to notice is that these states are equally 
spaced. The energy spacing between any two adjacent states is h 
times nu. 

That is incorrect. 

What I am drawing here is right. I am sorry about that. One-half h nu 
is from the bottom of the well to v equal zero. I think I know what 
happened. What I have shown you here is correct. What is in your 
notes is printed incorrectly. 

You should make note of that and change that. 

Suppose we have a molecule in the v equal zero state where the 
energy is one-half h nu, that molecule can be excited to the v equal 
one state. 

That molecule in v equal zero is still vibrating, but we can make it 
vibrate even faster with more energy. 

The same cycles per second but with more energy by promoting it to v 
equal one. We can do that if the molecule absorbs a photon. And the 



energy of that photon has to be equal to the difference in the energies 
of these two states. 

So, if the final energy here of the v equal one state, that is the final 
state, is three-halves h nu and the energy of the initial state was one-
half h nu then the difference in energy between the states is h nu. 

We have to have a photon that has exactly this energy different, delta 
E. That delta E then has to be gotten by a photon with a frequency 
equal to nu. 

And the frequency of that photon that is going to make that transition 
is actually also the fundamental frequency of the molecule. 

We are lucky on this one. Nu is delta E over h. We have to have a 
photon with that frequency for the molecule to be promoted from v 
equal zero to v equal one. 

How do we know what that is? Well, we do an experiment. 

We do an infrared spectroscopy type of experiment. The difference in 
the energies between vibrational states is in the infrared range of the 
electromagnetic spectrum. And so we are going to use infrared 
radiation. 

We have some source of infrared radiation. 

It puts out all different frequencies in the infrared. And then we send it 
through a monochromitor. The monochromitor disperses that radiation 
in space and allows only a certain frequency of radiation to come right 
through the slits and out into our sample. 

It is like you had the diffraction glasses where we disbursed the 
radiation in space. 

Well, a monochromitor is essentially the same thing. There is a 
diffraction grading in it. It allows, out of the front end, only radiation of 
a certain frequency to come out. 

And we can adjust what that radiation is or what frequency that 
radiation has. We then allow it to pass through our sample, say HCl. 
And then there is photo detector over here, some kind of 
photomultiplier. 



And what will happen is that if this molecule is going to absorb 
frequency of that radiation, well, then the number of photons reaching 
the photo detector is going to go down. 

If the frequency does not match the frequency of the vibration of HCl, 
well, the photons go right through onto the detector. But if it matches 
then the molecule absorbs those photons and they never make it to 
the detector. 

So, a plot looks like this. 

This is the intensity at the detector versus the frequency of the 
radiation. The intensity will be high, but now at some frequency, which 
will turn out to be the vibrational frequency of the molecule, the 
intensity goes down low. 

And then, as you go to higher frequency, the intensity comes back up. 
Right here, the molecule has made the transition from v equal zero to 
v equal one because the frequency of that photon matches the energy 
difference between v equal zero and v equal one divided by h. 

It also happens to be the fundamental frequency of the molecule for 
HCl. 

So, that is how we know what those fundamental frequencies are. 
Let's now look at what those energies are. We have gone from v equal 
zero to v equal one. 

Delta E equal h nu. We just measured nu as 8.6 times 10 to the 13 
inverse seconds. 

Multiply it by h. That is going to give us delta E. The difference in 
energy between the two states is 5.7 times 10 to the minus 20 joules. 
If I turn that into kilojoules per mole that is 35 kilojoules per mole. 

That is the energy difference from here to here, about 35 kilojoules 
per mole. How strong is the HCl bond? Well, the HCl bond from here to 
here is about 420 kilojoules per mole. This is about a little bit less than 
a tenth of the total bond strength for HCl. 

If we make it vibrate, we are not going to make that bond break. 

It is an order of magnitude less energy here than what you need to 
break that bond. Now, here is something that is a little confusing. 



These fundamental frequencies, it turns out that we actually use a 
different convention to label them, different units. We do not use hertz 
very often to talk about the fundamental frequencies of molecules. 

We use something called a wave number instead of hertz. 

A wave number is an inverse centimeter to the minus one power. The 
symbol for a wave number is a frequency sign with a bar on top of it. 
That is a wave number. 

How do we get a wave number? Well, we get a wave number by taking 
the frequency in hertz, inverse seconds, and dividing it by the speed of 
light. 

But the speed of light, of course, has to be in centimeters per second. 
The seconds cancel and what we have then left is inverse centimeters. 

For example, if the fundamental frequency of HCl was 8.6 times 10 to 
the 13 hertz, we divide that by the speed of light in centimeters per 
second and the wave numbers, or the fundamental frequency in wave 
numbers then is 2886 wave numbers for HCl. 

These are the common units that are used to talk about the 
fundamental vibrational frequencies of molecules. 

And these are the common numbers used to discuss infrared spectra 
of molecules. This unit of a wave number. 

It is a non-SI unit. In other words, what you will often see is an 
infrared spectrum intensity at the photodiode now versus wave 
number. And right at 2886 wave numbers that is the fundamental 
frequency in wave numbers. 

That is where the molecule makes the transition from v equal zero to v 
equal one. 

Now the question is what determines the frequency of the vibration of 
a molecule? Well, what determines the frequency of that vibration, and 
here I have now gone back to frequency because I am writing it in 
terms of some other parameters, are two parameters. 

One is the force constant k and the other is the mass. 



What I have here is the reduced mass. I will explain that to you in just 
a moment, but this is essentially the mass. The frequency is given by 
one over 2pi times the square root of this k, the force constant over 
the mass. 

That force constant k is a measure of the stiffness of the spring. 

In other words, if you have a very stiff spring, k is very large. That is 
you need a lot of force to pull that spring apart, a lot of force to 
compress that spring. A large k means you have a very stiff spring. 

If you have a small k that means you have a very weak spring. 

It does not take very much force to stretch that spring or to compress 
that spring. So, k is a measure of the stiffness of the spring. It also 
tells us something about the shape of the interaction energy. 

In other words, what k actually tells us here is kind of the width of this 
well. 

Here is my interaction energy potential well. If you have a very narrow 
width, this is a large k. If you have a very broad width, this is a small 
k. So, k, the force constant tells us about the shape here of this well. 

Very narrow well, large k. 

Very broad well, small k. Now, I think that maybe you have seen this 
before in 8.01. Have you done the harmonic oscillator yet? No? Yes? 

Some yes. Some no. Mostly no, it sounds to me. This expression here 
for the frequency you are going to see in 8.01 some time. 

It comes from the harmonic oscillator model. You will remember that 
you have seen this before. Those of you who have know what I am 
talking about. Those of you who have not, just remember you are 
going to see this very soon once again. 

Now, the other parameter here that is important is this nu here, this 
reduced mass. 

What the reduced mass is, is essentially the mass. Now, if you had 
already done this in 8.01, what you are going to look at is a mass on 
the end of a spring attached to a wall. 



There will be a wall, then you will see a spring, and then there will be 
some mass m. 

When you do this problem as a harmonic oscillator, you are going to 
write nu here as k over this mass right there. But, in this example, this 
mass here is the only body that is moving. 

Your wall is still. 

But, in the case of a molecule, both atoms are moving. What mass do 
we use? Well, the fact that both are moving means we have a two 
body problem. And we are going to have to change the coordinate 
system to take into account that both masses are moving. 

We can do that easily. 

And doing that easily involves using something called the reduced 
mass. The reduced mass takes a two body problem and reduces it to a 
single body where the single body is this fictitious body with a mass 
given by the reduced mass. 

It is exact. I did not make any approximations here. But the bottom 
line is that this reduced mass is simply the mass of one atom times 
the mass of the other divided by the sum of the two masses. 

And sometimes a useful approximation is when one of the masses is 
much lower than the other mass, so when m1 here is smaller than m2. 

Well, you can see in that case if m1 is very small compared to m2, we 
are going to treat it like a zero. 

And then these two m's are going to cancel. You can see the reduced 
mass is roughly equivalent to the mass of the smaller body. 

Sometimes I will ask you to use that approximation. Other times I will 
ask you to calculate the reduced mass. Let's look at some frequencies 
for some molecules here. 

I have an array of molecules. 

All of them roughly have the same force constant. I am going to look 
at the mass dependence on the fundamental frequency. I have the 
frequencies written both in terms of wave numbers and hertz. The first 



thing I want you to notice is the fundamental frequency for hydrogen, 
4159 wave numbers. 

That is the highest vibrational frequency that we know about. 

Why is it so high? Well, because those two hydrogens are so light and 
the mass is in the denominator of that fundamental fr3equency. So, if 
it is in the denominator it is small and the fundamental frequency is 
going to be high. 

Then look at these molecules, HCl, HBr, HI. In this case here, it is all a 
hydrogen bonded to a halogen. 

For the most part, the reduced mass of these three molecules is that 
of hydrogen. If that is of hydrogen, since that is in the denominator for 
the expression for the frequency, well, the frequencies are going to be 
high in general. 

And they are, 2886, 2559. Not as high as molecule hydrogen but still 
pretty high. 

And then we look at these three molecules, chlorine, bromine, iodine. 
Both particles very heavy. The reduced mass is large. 

Look at what happened to the frequency here. The frequency really 
has gone down much lower than it was for HCl, HBr or HI. So, that is 
one parameter. 

The other parameter, of course, is the force constant. 

Here are a set of molecules that have all roughly the same reduced 
mass, fluorine, oxygen, NO. And I have written down their 
frequencies, both in wave numbers and hertz. For molecular fluorine, 
which has a single bond, that frequency here is pretty low, 892 wave 
numbers. 

It is pretty low. 

This is a single bond, which is easy to stretch. It is not very stiff. It is a 
lose bond, so to speak. But now look at oxygen and NO. They have 
double bonds, which are stiffer. If they are stiffer, k is larger, the 
fundamental frequency is higher. 



Then we look at CO and nitrogen. They have triple bonds, which are 
even stiffer. 

Stiffer bonds, larger k, higher fundamental frequency that are those 
two parameters that dictate the frequency of vibration. 

We will do rotation on Wednesday. See you then. 


