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5.112 Principles of Chemical Science, Fall 2005 
Transcript – Lecture 26 

On Monday, we went through and looked at the functional forms for 
sp2 hybrid orbitals as found in the case of the BH3 molecule. 

Now, you should recognize that there are other hybridization schemes 
that go along with different geometries. 

So, BH3 was trigonal planar. And we are going to talk some more 
about BH3 today. If you had been considering last time instead a 
tetrahedral carbon atom then the hybridization scheme we would have 
needed to develop would have been the SP3 hybridization scheme. 

That would be associated with a tetrahedral carbon atom. 

On the other hand, if we had a linearly coordinated carbon atom or 
some other main group atom, boron or beryllium, for example, then 
we would have had to develop the sp hybridization scheme. 

You should not miss the forest for the trees in putting into context 
from my pervious lecture on the sp2 specific case for that type of 
geometry. 

But now, rather than going through more examples of valance bond 
theory treatments of molecules, instead it is time for me to introduce 
you to the tenants of the molecular orbital theory for treatment of 
molecular electronic structure. 

I mentioned valance bond theory as having been introduced by Linus 
Pauling. And then I also named Robert S. Mulliken, MIT 
undergraduate, as the father of molecular orbital theory. 

And these are both two different perspectives on viewing electron 
structure of molecules that arises from the results of quantum 
mechanics. 

In the case of valance bond theory, we have a situation where you 
have localized electron pairs. 
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In the case of molecular orbital theory, electron pairs are still going to 
be important, but they are going to be able to be delocalized over the 
entire molecule in some cases. 

So, this is very different. 

This is a major difference between MO theory and valance bond 
theory. In the case of the BH3 molecule that we considered last time, 
you had four positively charged nuclei. And you arrange those four 
plus charges at the points in space that correspond to the equilibrium 
geometry of the molecule. 

And then you sprinkle in your six valance electrons and you want to 
understand how those six electrons become organized in space in 
response to that electric field set up by those four positively charged 
nuclei. 

And we took the approach last time that we are going to localize 
electron pairs in between nuclei. 

And, because structurally the BH3 molecule is symmetric and the three 
hydrogens are indistinguishable from one another, we decided that we 
were going to make hybrids. 

And so we talk about hybridization. 

The idea behind hybridization was to change the atomic orbitals of 
boron by mixing them so that we would have one that would be able 
to point at each of the three hydrogens in space to form three nicely 
perfectly directed two electron sigma bonds between boron and 
hydrogen. 

That was the scheme that we adopted, this hybridization scheme, but 
in MO theory we are not going to do that. 

We are not going to interfere with the intrinsic atomic orbital structure 
of a boron atom in order to make bonds. And we are going to see that 
there are some predictions that come out of the MO treatment for the 
molecule that differ from those that came out of the valance bond 
treatment for the molecule. 

And so here no hybrids. 



In terms of just the vernacular of chemical structure, you will hear sp3 
as being used interchangeably with the notion of a tetrahedron. But in 
valance bond theory it refers to a particular hybridization scheme in 
which we actually mix s and p as a preparative to bond formation in a 
molecule. 

And we mix the atomic orbitals on that central atom in a hybridization 
scheme. 

In MO theory, we are not going to do that. It is very important that 
you keep these theories and the language associated with the series 
separate in your minds so you can see the difference between these 
theories. 

And then one of the consequences of this valance bond theory and the 
hybridization scheme is that it is not so good for excited states. 

And what that means is that we were developing a scheme to describe 
the bonding in the molecule in its ground electronic state. 

Molecules can have excited states, just like atoms can have electronic 
states. 

And over here, in molecular orbital theory, we are going to find that 
we do a much better job with excited states. And that is important for 
understanding the range of properties associated with molecular 
systems. 

And you are going to see indeed that the energy level scheme for the 
six valance electrons in the BH3 molecule is different, depending on 
whether you use valence bond theory or molecular orbital theory. 

Now, for molecular orbital theory, we are going to need, again, like we 
do for valance bonds, to have some kind of a procedure for forming 
molecular orbitals conceptually. 

And the first step in such a procedure is that you are going to want to 
analyze the three-dimensional shape of the molecule. 

And we do this, of course, when we talk about the valance shell 
electron pair repulsion theory for predicting molecular structure. 

We are going to look at the structure. And we want to identify, usually 
by inspection, sets of symmetry-related-



--atoms or orbitals. 

And here I am talking about atomic orbitals. I will come back in a 
moment and talk about what I mean by symmetry-related. This is a 
concept that can be put on a very nice firm mathematical footing. 

And, in fact, if you find this type of analysis interesting and would like 
to see more of the math that can help you to organize the results of 
quantum mechanics in terms of symmetry then you will want to put 
the 5.04 subject on your calendar for the future. 

That subject is devoted, in large part, to the applications of group 
theory to chemistry and chemical problems. And symmetry plays a big 
role in that. 

And then, two, we are going to form combinations. 

And let me just further quantify this by saying we are going to form 
linear combinations-

--of symmetry-related orbitals. 

One of the big approximations that we usually kind of take for granted 
in the molecular orbital theory of electronic structure is the LCAO 
approximation. 

I am just going to mention that parenthetically here. 

This is that we can form molecular orbitals that will be linear 
combinations of atomic orbitals. This LCAO approximately arises from 
the fact that we can solve the Schrödinger equation exactly for the 
hydrogen atom, but for big molecules and many electrons systems we 
cannot. 

And what we like to do is to take the atomic orbital wavefunctions, 
that is, atomic orbital here in LCAO, and use those wavefunctions in 
our approximation of molecular orbitals. 

We are saying that we can combine these atomic orbitals on the atoms 
that are in a molecule to form the molecular orbitals that will be able 
to spread out and delocalize over the entire molecule. 



This is inherent in the development of the theory that I am working on 
here. 

And you should see that this will pop up in a number of cases, but it is 
an inherent approximation that we are accepting. And then, three, we 
are going to combine the linear combinations from part two-

--with central atom atomic orbitals. 

And that is what we will do. And if we have done that properly we will 
have arrived at molecular orbitals for the system in question. 

Now I want to take a little bit of time to go through each one of these 
steps in order to define the problem that we have for this alternative 
way of viewing the electronic structure of the BH3 molecule. 

Now, why am I choosing the BH3 molecule for this? Well, I am 
choosing it because it is an easy problem and one that is illustrative of 
the steps that go into forming molecular orbitals for a system. 

In your textbook, you will see that before you get to something like 
BH3 first diatomic molecules are considered. 

Those, I will show you on Friday, are actually a little trickier to 
understand than is the case with BH3. That is because in molecular 
orbital theory we have the same number of MOs as AOs. 

If we start out with a certain number of atomic orbitals that come into 
play by virtue of the atoms that are in the molecule then that number 
of orbitals will be the same as the number of molecular orbitals that 
we will get at the end of the problem. 

They won't all be filled. 

We will have some that are empty. But we are going to have the same 
number of molecular orbitals as atomic orbitals that go into the 
problem. And so what that means is that the complexity of the 
problem is related to the number of MOs and, hence, the number of 
AOs. 

The complexity of the problem scales with the number of atomic 
orbitals in the problem. 

We actually call these our basic functions. 



And one of the things that John Pople talks about, if you have gone 
and looked at his video that I pointed you to in the Problem Set, he 
talks about the wonderful fact that our computational power has 
gotten so great, and will grow so much greater in the future, that we 
are able to computationally handle problems of the calculations of the 
properties of enormous molecules that bring into a problem an 
enormous number, a vast number of atomic orbitals. 

And so, a great computational power is necessary to apply molecular 
orbital theory, or even the more recent density functional theory to 
problems of electronic structure that we need to grapple with in order 
to predict properties of molecular systems. 

And in the BH3 molecule, which is, as I said a simple problem of 
electronic structure and a nice illustrative one for today's purposes. 
This is a seven orbital problem. 

Why is this a seven orbital problem? It is a seven orbital problem 
because boron has four valance orbitals, an s, a px, a py, a pz. 

And we have three hydrogens, each with their 1s orbital. 

We have our valance orbitals on boron. We don't count the 1s orbital 
on boron because that is filled and is a core orbital and doesn't get 
involved in chemical bonding. The valance shell for boron is the n 
equals two shell. 

We have 2s, 2px, 2py and 2pz. 

And we have three hydrogens, each with their 1s orbital. If we were to 
tackle right now the problem of the molecular orbital energy level 
diagram for a diatomic molecule like O2, dioxygen, we would find 
immediately that this analysis of how many atomic orbitals we have 
available would give us the value eight. 

And so it is a more complicated problem. 

It has one more atomic orbital than this problem, even though this one 
has four atoms because three of these atoms happen to be hydrogens 
which only bring in one orbital to the problem. That is why I am 
choosing this. 



And then, in addition, I am choosing this because the consequences of 
the symmetry of the BH3 molecule are that the orbital interactions 
that we are going to identify occur in nice pair-wise sets. 

And that makes things especially easy to see in terms of how chemical 
bonds arise in the context of [MO3?] for a problem like this. 

And so, to now go ahead and carry out step one for this, we are going 
to draw the molecule and try to identify sets of symmetry-related 
atoms/orbitals. 

And, before you do that, I just would like to show you an example of a 
highly symmetric molecule, because this notion of symmetry is 
something that, at this point in time, I really only want you to gain an 
intuitive grasp of, I am not going to quantify it. 

But, if you look at a molecule like the one I have placed on the left and 
right-hand screens, you will see that it is a large round molecule. 

Actually, round, spherical things are the most symmetric things that 
we can think of. 

Here you can imagine that this is a big ball with atoms located at 
various points on the surface of the ball. This is just a ball and stick 
representation of the C60 molecule, also known as 
Buckminsterfullerene. 

It is a geodesic dome-type of molecule. This molecule has the chemical 
formula C60. There are no hydrogens in this molecule. All the atoms 
are displayed. 

And each carbon atom sits in a position where it is adjacent to one 
five-membered ring and two six-membered rings on the surface of this 
spherical molecule. 

And that is true of every carbon atom on the surface of this whole 
molecule. As you go on in chemistry, if you go into the analysis of 
molecules using nuclear magnetic resonance spectroscopy, you will 
find that it is really important to be able to identify the symmetry of a 
molecule. 

And you will realize that the symmetry of the molecule is manifest in 
the nuclear magnetic resonance spectrum of a molecule. 



If you take the carbon-13 nuclear magnetic resonance spectrum of this 
molecule, a sample composed of this molecule, you will see that there 
is only a single C13 signal in the spectrum. And that is because all 60 
carbon atoms are in an identical environment in this molecule. 

Every one of them feels exactly like everyone else. 

They are all equally distant from the center of this molecule. And they 
are all equally distant from their set of neighbors. And so, in that way 
of looking at a molecule, you would see that they are all equivalent. 

You may have encountered this molecule before, but this molecule's 
discovery-

It was actually predicted initially from analysis of mass spectrometry 
data by Professor Smalley, a Nobel Prize winner whose efforts in this 
area have spawned off chemistries involving not only these nano-sized 
balls of matter but also nano tubes made of carbon. 

And this whole area that we think of nano technology, really a lot of it 
is dominated by the chemistry of new forms of carbon that arose with 
the discovery of Buckminsterfullerene. 

And that is just one example of a new allotrope of carbon that was 
discovered in recent years. 

This gives you an idea for symmetry. I could show you pictures, 
actually, of enormous biomolecules. There are large viruses that are 
composed of biopolymers, macromolecules that pack in a way that is 
symmetric so that you can see these things. 

If you view them, in the right kind of representation, you will be able 
to see the symmetry in them. 

And one definition of symmetry that I would like you to take away 
from this picture is just that each of the atoms that are symmetry-
related is indistinguishable. If you turn the molecule around and look 
at the atoms, those that are symmetry-related are indistinguishable 
from one another. 

And so, when we have a trigonal planer BH3 molecule, is the boron 
symmetry related to any of the other atoms? No, it is not. 



What about this hydrogen? I labeled them last time A, B and C. This 
hydrogen labeled C, is it symmetry-related to other hydrogens? Yes. 
And that is because of the symmetry of this molecule with these 120 
degree bond angles on the planarity of the molecule. 

So, you have a set of three hydrogens. 

And their 1s orbitals are in space indistinguishable from one another. 
They are related by symmetry. And so, in this problem here, we have 
four orbitals here on the boron that are not symmetry-related. 

And then also incidentally let me point out that the boron atom is 
located at the center of gravity of this system. 

If atoms are going to be symmetry-related they must not be located at 
the center of gravity of the system. 

Let's go over here and expand on these ideas. 

The method that I am going to develop here for forming the linear 
combinations has to do with thinking ahead in this problem to the fact 
that we are going to want to make linear combinations that have the 
correct symmetry to bond to atomic orbitals on the central boron 
atom. 

Let me draw the ones that are going to be relevant to this part of the 
problem. 

This one over here would be the boron pz orbital, so it has one positive 
lobe coming out of the board, negative lobe going back. 

Over here we would have the boron py orbital using the coordinate 
system that I had chosen last time, which is x up and y to the left. And 
then here we have the boron's px orbital. And then over here we have 
the boron's 2s orbital. 

And so, our challenge now will be to construct linear combinations, we 
are at part two, of the set of three hydrogen 1s orbitals that can match 
in symmetry the boron central atom orbitals. 

Last time, remember, for hybridization, we were making these orbitals 
mix with each other in order to point at the hydrogens. Now what we 
are doing is kind of an inverse concept. 



We are going to mix the hydrogen orbitals so that they have the right 
symmetry to interact with the central atom atomic orbitals. 

There is a nice parallelism here. Here is going to be our LCs. 

They key feature of the boron's 2s orbital is that it does not have any 
nodes. Remember nodes are surfaces. When you pass from one side of 
a node to the other you get a change in sign of the wavefunction. 

And we indicate that change in sign by differential shading. 

The 2s orbital has no nodes whatsoever. And a way that we can 
construct a linear combination that has the same spatial nodal 
properties as that boron 2s atomic orbital is as follows. We can involve 
contributions from each of the hydrogen 1s orbitals. 

Remember this one is A, this one is B and this one is C. 

This is going to be a linear combination of the three hydrogen 1s 
orbitals. I will write this one as follows. This one will be written as A 
plus B plus C. That indicates the 1s orbital on A plus the 1s orbital on 
B plus the 1s orbital on C. 

And, as we talked about last time, wavefunctions that we write should 
be normalized. 

And they should satisfy the unit orbital contribution rule. For 
normalization here I give a factor of one over three for this linear 
combination formed as a symmetry match with the boron 2s orbital. 

You can see, I hope, what we are doing. We are projecting the nodal 
properties of the central atom atomic orbitals onto the linear 
combinations that we are forming. 

And we are going to form a complete set of three linear combinations 
in this way. 

Let's make one that has symmetry properties that remind us of this px 
orbital. On HA we are going to have a positive contribution to match 
the positive contribution of this lobe of the px orbital that points along 
the plus X axis. 

And then down here we are going to have contributions from 
hydrogens B and C. 



And they are going to be smaller and they are going to be opposite in
phase. They are going to be opposite in-phase because we are building 
a linear combination that has a node approximately at the center of 
the system here so as you go from positive x into the negative x 
region of space, the wave function changes sign to match the change 
in sign associated with the px orbital. 

We are projecting the nodal properties of px onto the linear 
combination of hydrogen orbitals that we are forming here. And this 
one, written in normalized fashion, will be two over three, A minus 
one-half B minus one-half C. 

And, although what we are working with here are linear combinations 
of these symmetry-related hydrogen 1s wavefunctions, you are going 
to find that these coefficients on the atomic orbitals that contribute 
eventually to the molecular orbitals are going to come out as 
normalized and as unit orbital contributions. 

So that if we started out this problem with a single 1s orbital on HA, 
that will be entirely accounted for among these linear combinations 
and the molecular orbitals that we are going to make with them. 

Now let's generate a linear combination having the nodal properties of 
py. 

And, in order to do that, we need to have a negative coefficient out 
here in the minus y direction. We are going to put in a contribution 
from HC as negative, like that, to match that. And then over here we 
are going to make a contribution for HB that is positive. 

And then noting that there is a nodal plane along the yz plane, which 
comes out of the board like this, so that we are always negative along 
minus y and we are positive along plus y. 

We match that here. And the coincidence of that nodal plane with the 
location of HA dictates no contribution from HA to this orbital for 
reasons that actually we looked at last time. 

Namely that we cannot bring a hydrogen 1s orbital in here and also 
change sign on going half-way through that hydrogen 1s orbital, 
because s orbitals have to have the same sign everywhere. 



It does not contribute to this linear combination. And our normalized 
form for this will be one over two B minus C. 

And then, if I were to ask the question, can I make a linear 
combination of the three hydrogen 1s orbitals that has the same nodal 
properties as pz, the answer would be no because they all lie in the xy 
plane and they are just s orbital and cannot change sign as you go 
through the xy plane from plus z to minus z. 

And so, we are done here. And what you are going to find is that we 
have created these three linear combination according to step two. 

And taking into account both the symmetry properties of the molecule 
to identify a set of three symmetry-related atoms and orbitals. 

And then taking into account an analysis of the nodal properties of the 
central atom atomic orbitals so that we could project those out to help 
us find appropriate linear combinations for mixing with the central 
atom orbitals. 

And, when we do that mixing, we are going to find out that there are 
three ways that we can do it. 

We are about to move onto step three of this problem. We are going 
to need to combine these linear combinations with the central atom 
atomic orbitals according to the rules of MO theory to generate first 
bonding molecular orbitals. 

And the bonding molecular orbitals that we will get will be an in-phase 
combination-

--of our LCs, our linear combinations of atomic orbitals with our boron 
atomic orbitals. 

That will describe the chemical bonding in our system. And we will see 
that it contrasts in a very interesting way with the hybridization 
scheme developed last time. And the key phrase to underline here is 
in-phase. 

And what that in-phase means is that when two positive lobes of two 
orbitals centered on two different atoms are juxtaposed and neighbor 
one another and can have good overlap of their atomic orbital 
wavefunctions that leads to in-phase constructive interference and 



stabilization of the electrons associated with that newly formed 
bonding molecular orbital. 

And that stabilization is what we call the chemical bond. 

The analogy to that in valence bond theory is the idea that a pair of 
electrons associated with two nuclei in a sigma bond is more stable b/c 
it experiences simultaneously two positive charges. 

And here we are generalizing that and allowing electrons to flow over 
the molecule as a whole. But now we have a new concept, and that is 
anti-bonding. 

Anti-bonding molecular orbitals will be out-of-phase combinations that 
are repulsive and lead to high-energy interactions. 

And when, as in the case of the problem we are considering here, the 
interactions occur in pair-wise sets, we will find that we get very nicely 
for every bonding molecular orbital a corresponding anti-bonding 
molecular orbital. 

Also, one of the interesting things is that if you start putting electrons 
into anti-bonding orbitals, if your system just happens to be so 
constructed as to have many electrons such that you fill up not only 
the bonding molecular orbitals of electrons to make the chemical 
bonds but you continue on and you have enough electrons to keep 
going and put them into anti-bonding orbitals, those anti-bonds start 
to cancel the bonds. 

And so, you will see a very nice progression of this as we study the MO 
theory of the homonuclear diatomic molecules starting on Friday. 

And then here is another concept that arises from the MO analysis of a 
molecule, and that is that certain orbitals can be non-bonding. 

And an example of this would be a lone pair of electrons. And it 
happens when an orbital or a linear combination of orbitals finds no 
counterpart-

--of like nodal symmetry. 

These nodal properties of orbitals are very important, and I will show 
you later how the nodal properties are related to the energies of the 
orbitals as we consider them. Having given you this preview of how 



orbitals are going to be able to combine in the MO theory, let's see 
how it actually takes place in the case of BH3. 

Now we are drawing another example of an energy-level diagram 
where the energy is low at the bottom and rises as it goes up. 

And these energy-level diagrams that we are now developing for 
molecules are analogous to those that you studied earlier in the 
semester for atoms. 

And we are just generalizing this notion to the atoms. 

And what I am drawing over here is our boron 2s orbital and here is 
our boron 2px, 2py, 2pz orbital. Those horizontal bars just represent 
the energy of these orbitals in the molecule. 

Here I am just redrawing the boron atom. 

And then, over here on the right, we are going to see that we have our 
linear combinations that we developed. These are our 3H1s linear 
combinations. We found that the three hydrogens in BH3 were 
symmetry equivalent, so we generated linear combinations. 

The pictures of them are over there. 

I can give them names. Why don't I call them D, E and F. 

We have D constructed to match the nodal properties of the boron's 2s 
orbital. E and F were respectively constructed to match the nodal 
properties of the boron's 2x, 2px and 2py orbitals. 

And I am showing you their relative energies. And now we need to do 
this issue referenced here as point three. We need to combine these 
things. 

I have these on the one hand and these on the other. 

Our seven atomic orbitals have been changed into four atomic orbitals 
and three linear combinations, so I still have seven orbitals total. And 
now I am going to combine these with these according to their nodal 
properties to generate seven molecular orbitals. 

And let's do it this way. 



We are going to take linear combination D that has been constructed 
to match the boron 2s orbital in terms of nodal symmetry properties, 
and we are going to make a bonding combination. 

I am going to draw these pictorially in a moment. And, in this case, 
those are the only two orbitals in my seven orbital system here that 
have that set of nodal symmetry properties. 

And for every bonding MO, I must have an anti-bonding MO. 

This is one of our molecular orbitals. And there is going to be a 
corresponding molecular orbital up here high in energy. And this will 
be anti-bonding molecular orbital that will be the out-of-phase 
combination of the boron 2s with this linear combination that I labeled 
D. 

Anti-bonding molecular orbitals are usually denoted with a star. 

We have a bonding combination and an anti-bonding combination. 
Now we can form two more bonds that will spread out over the 
molecule b/c, if you recall, we had our px and py pair that served as 
the nodal template for our construction of linear combinations E and F. 

We are going to be able to match up those to form two more bonding 
molecular orbitals. 

And these will be found to be higher in energy than the first one that 
we formed from D. Here is a pair of bonding molecular orbitals that 
derive from linear combinations E and F combining in-phase with 
boron's px and py atomic orbitals. 

And there will be a corresponding anti-bonding combination where we 
allow those orbitals to interact in an out-of-phase manner. 

And you will see what that means shortly. Let me put that up there 
and add a star to indicate that this high energy pair of molecular 
orbitals is an anti-bonding pair of orbitals. 

I have six orbitals now in my molecular orbital energy-level diagram 
for BH3. 

And that means I am not done b/c I have to have seven and I started 
out with seven atomic orbitals. Look over here. 2pz was an atomic 



orbital on boron that did not find any way of serving as a template for 
making a linear combination involving the three hydrogens. 

And so, it comes over here as non-bonding. 

It has no counterpart of like nodal symmetry b/c of the location of 
those three hydrogens in the xy plane, which is a nodal plane for the 
boron pz orbital. And so, this one is nonbonding. 

These three orbitals up here are anti-bonding. 

And the ones down at the bottom, which are the lowest in energy 
corresponding to being able to most tightly hold onto electrons in them 
are bonding molecular orbitals. And so, our electrons can fill into this 
MO energy-level diagram in that way. 

We have our six electrons that come into this problem. 

We have boron bringing in three valance electrons and three 
hydrogens each bringing in one valance electron. There are six 
electrons to put into the diagram filling up three of the molecular 
orbitals, and then leaving empty pz. 

Let me introduce a little bit more MO language right now. This one 
here will be called the highest occupied molecular orbital and this one 
here will be called the lowest unoccupied molecular orbital. 

The reason why I am drawing attention to these orbitals is that in 
chemistry the chemical properties derive often times from those 
orbitals that are in what is called the frontier orbital region. 

And the frontier orbitals are those close in energy to the HOMO-LUMO 
gap. And I will come back to this. 

But those highest energetically lying electrons are going to be the ones 
responsible for nucleophilic properties of the molecule and basic 
properties of the molecule and reducing properties of the molecule. 

Whereas, low-lying empty orbitals are going to be the ones responsible 
for acidic properties of the molecule or oxidizing properties of the 
molecule. And we will come back to that in a moment. 

But that is something pretty general and very useful that comes out of 
studying molecular orbital energy-level diagrams. 



Now that we have the diagram, let's see what the orbitals in the 
diagram look like. 

And I will try to do this relatively quickly. Here let's start with the 
lowest lying molecular orbital in the system. 

This is a representation of an in-phase combination of the boron 2s 
plus D, where D is defined up here as that linear combination. 

This will be a molecular orbital having the nodal properties of a 2s 
orbital centered on that central atom. That is where our lowest lying 
two electrons reside. 

Now, if you look at the LUMO over there and then go up one orbital in 
energy, you will be looking at this orbital, which is the boron 2s orbital 
minus D. 

And the thing that makes this out-of-phase linear combination so 
much higher in energy than its in-phase counterpart is the appearance 
now of a nodal surface. 

And this node is between the nuclei. 

It goes all the way around and is between the central atom s orbital 
and those peripheral hydrogens. And I will show you a picture of it. 

This is our BH3 LUMO plus one molecular orbital. 

You can see that we have a wavefunction in the center of one sign. 

And then, as we go along any one of the BH bond vectors from boron 
to hydrogen, we change phase midway along the bond from positive to 
negative. 

And that is true, no matter which of the three BH bonds we pick to 
traverse along. 

That one has the nodal properties as drawn down there for the boron 
2s interacting in an out-of-phase manner with linear combination letter 
D. 

And so, next time I will finish up and show you what these other 
orbitals look like as calculated. 



I hope you have enjoyed this. We will see more MO theory on Friday. 


