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Some of you will recognize this molecule that I have rotating up on the 
screen because it is one of the coordination complexes of Werner that 
we talked about last time. And Werner, of course, was well-known. 
And some of you probably read is biography over the last few days on 
the Nobel Prize website. Well-known for his theory that broke down 
the preconceived notions that had been prevailing at that time 
concerning the structure of systems that have unusual salt-like 
behavior in some cases but that contain the 3D elements. 

I am focusing on 3D, but this is also true of 4D and 5D elements, the 
transition metals. Elements like titanium, vanadium, chromium, iron, 
cobalt, nickel, etc. This molecule here, that you see spinning up on the 
screen, is being represented here on the screen in one of these kind of 
arbitrary forms wherein the cobalt center at the middle of the molecule 
is just a round ball of an arbitrary size. 

And then this particular molecule that contains a cobalt three ion is 
surrounded by a compliment of six ligands. We have three chloride 
ligands that because this program chose to do so colored those 
chlorides the same as the cobalt, not what I would do, and put the 
three ammonia ligands, colored the ammonia nitrogens in dark blue 
and the ammonia hydrogens in white. 

And we talked about the fact that these transition elements, in fact, 
these three plus ions of metals like cobalt can behave simultaneously 
as Lewis acids toward a multitude of Lewis bases, here six. This is a 
time six Lewis acid in the middle and six Lewis bases, which are three 
chloride ions and three ammonia molecules oriented around it, in an 
arrangement that is quasi-octahedral. 

Because the positions of the three nitrogens of the ammonias that are 
interacting with the cobalt center and the three chloride ions are 
located near the vertices of a regular octahedron. So we will be taking 
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use of the geometry of molecules like this in discussing electronic 
structure properties of these molecules today. 

We will be doing that beginning today. And that will be important to 
understanding the magnetism and the color and also the reactions of 
molecules like this. Now, one other arbitrary thing that this program 
did is it chose not to draw lines between the cobalt and any of the six 
ligands. But normally, when you see these molecules drawn in 
textbooks, you will see that the lines drawn are the same as the lines 
between the nitrogens and these hydrogens. 

So we would have to add six more lines to this drawing to get the 
typical textbook representation of a molecule like this. But, still, that 
would be a somewhat arbitrary representation. And so, I would like to 
show you a less arbitrary representation. And we will do that forthwith. 
And this one has to do with looking at the same molecule but 
represented as an electron density isosurface. And that isosurface will 
be colored according to this function that tells us about the propensity 
to pair electrons in 3D space. And so you will recall that when we talk 
about coloring electron density isosurfaces in this way, so this now is a 
physically important kind of representation of this coordination 
complex, this color scale will run from red all the way to blue. 

And at blue is where you find regions in space where you are most 
likely to find pairs of electrons mapped onto the value here, colored 
mapped onto the value of an electron density isosurface. Here the 
value of the electron density that is present for every point 
represented on this surface is 0.11 electrons per unit volume. And so 
what you see here is that, in fact, the electron density does become 
low as you move from the cobalt in the direction of any one of the 
ligands. 

But the lone pair on each ammonia is certainly polarized in the 
direction of the cobalt center. And the cobalt center is not uniform in 
terms of the way that electron density is organized around it. You will 
see that right on the metal center we see red. And then sort of at the 
corners of a cube you see this yellow or green color on the cobalt, and 
that is very significant. 

And what we are going to be today is we are going to try to 
understand what happens when you put a set of ligands into an 
octahedral array around a central metal ion that has d-electrons and 
d-orbitals to play with. And, in fact, what you will see is that the 
oxidation state of the cobalt center here is plus three. That is why I am 



referring to it as a cobalt plus three ion. And because cobalt is in group 
nine of the Periodic Table you then know that there are six valance 
electrons on the cobalt center that you have to put into orbitals. 

And so what we are really seeking to know is how can we get an 
energy-level diagram for a system like this so we will know how to put 
those six electrons into that diagram, the ones that are mostly 
localized on the cobalt, and make predictions on whether the electrons 
should be paired up or not, for example. We saw with homonuclear 
diatomics, like the dioxygen molecule, that electrons are not all paired 
up. 

Two of the electrons are unpaired. And, when we have six electrons to 
put into an energy-level diagram for the cobalt ion, we are going to 
wonder just what the case is. How many energy levels are there and 
where do we put the electrons? And so we are going to need to very 
briefly review what I did at end of lecture last time. And that has to do 
with the properties of the five d-orbitals. 

Because, in order to answer the kinds of questions that we are posing 
about energy levels of metal ions that are transition metals, we are 
going to really need to know very well the nodal properties of these d-
orbitals. And so remember the m quantum number here can be zero 
for the dz2. It can be plus one for the dxz. 

And plus two for the dx2 minus y2. Minus one for the dyz orbital. And 
minus two for the dxy orbital. And let's draw those. dz2 is an 
interesting one. 

And, because it is distinct from the other four d-orbitals, we are going 
to be spending more time on it today than the others. What it has, 
these are the x, let's say y and z axes here, is a positive lobe along 
both plus and minus z. So it looks like a p-orbital so far, except that 
we have the same sign both in plus or minus z. 

And then what we have is a very interesting toroidal shape that goes 
around in the xy plane all the way around in a cylindrically symmetric 
manner. And so if you were to look down z onto this orbital it might 
look something like this. 

Like that. It would be cylindrically symmetric about z. And that was 
another feature that I didn't get to add to this diagram at the end of 
last hour, which is that because of this property, this m equals zero 
that means this is a sigma orbital with respect to the z-axis. 



Cylindrically symmetric about z. And then let's go to the xz, since I 
am making this x, y and z over here. The dxz has four lobes and they 
are in between the x and z axes, as I am trying to represent here. 

These two are kind of coming out in front here and these two back 
behind. And then the phases go as follows. Unshaded is again plus. 
And then we have the x2 minus y2 orbital, which has four lobes. 

In fact, the shape of xz, x2 minus y2, yz and xy are all the same. It's 
just that they point in different directions in space with respect to the 
Cartesian coordinate axes. x2 minus y2, like dz2, is an orbital whose 
lobes point along the coordinate axes like this. And it is minus along y, 
as the name suggests, and plus along x, as the name suggests. 

That is our dx2 minus y2 orbital. And then yz is like xz, but let me 
finish this part here. If dz2 is sigma with respect to z, and you imagine 
looking down z onto dxz, what would that be with respect to z? 

Anyone. Pi. Thank you. That would be pi with respect to z, because 
the yz plane is a nodal surface for this d-orbital, as is the xy plane. 
And that is what we are trying to do here, is become familiar with 
these orbital surfaces. And, accordingly, now, if you look down z onto 
the dx2 minus y2 orbital, you are now going to see two nodal surfaces 
when you look down it that way. 

Because you are going to see that there is one located over here. That 
is a plane that contains the z-axis, but it bisects the x and y axes. And 
then there is another one over here, but that is 90 degrees to the first 
one. And that makes this one delta with respect to z. 

Delta is when you have two nodes that contain the z-axis and if we are 
looking down that z-axis. And then over here the dyz orbital has its 
four lobes between y and z like that. And it is positive between y and z 
and negative over here, as I am shading. 

And this one, like dxz, is pi with respect to z. And then over here we 
have a dxy orbital as our final orbital. And what you might be able to 
guess, we have a sigma with respect to z, we have a pair of pi with 
respect to z for m equals plus and minus one. We also must have a 
pair of delta with respect to z for m equals plus and minus two. 

And that means that the dxy orbital, like dx2 minus y2, must lie in the 
xy plane. And, in order to be orthogonal to dx2 minus y2, we are going 



to have to rotate it such that its four lobes point now between the x 
and y Cartesian coordinate axes like this, although I am trying to 
improve on that with my coloration. That is like that. 

Again, this is an orbital perpendicular to z and which has delta 
symmetry. And now the two nodes are, in fact, the xz and yz 
coordinate axes. Indicating those nodal planes there. This is certainly 
the basics for what you need to know about the d-orbitals. And just 
briefly I would like to switch to Athena terminal here to show you that 
there are ways for you to go ahead and visualize the orbitals. 

And I am going to make this information available to you so that you 
can go ahead and do this yourself in order to visualize these in a way 
to take you right from the equations for the orbitals to their graphical 
representation. I think that is important to get a good understanding 
of orbitals. 

Let's zoom this a little bit so that you can begin to see it. 

This is a worksheet put together that, in fact, contains all the 
functional forms for the d-orbitals. Let me see. Where is that? Here 
we go. 

And you can look at this with Maple on Athena. And then you can look 
at the equation that represents the angular part of the wavefunction 
for the orbital that you are interested in. And then you can go ahead 
and plot it. And you can plot it in such a way that the function is 
animated. And, rather than just seeing it projected on a board as well 
as I can draw, you will be able to see it drawn up graphically. In fact, 
these come from the solution for the Schrödinger equation for the 
hydrogen atom. And the angular part of these wavefunctions that is 
going to be oh so important to us is something known as the set of 
spherical harmonic equations. And that should reference you to this 
issue of standing waves that we have discussed. Let's just see what 
we can do here. 

Sometimes I am not so good at using Maple up in front of the class. 

What you are seeing is we are getting representations for dz2. Right 
here is a way of writing dz2. You are going to see an important term 
here, three cosine squared theta minus one. And we will come back to 
that in a moment. That is the angular part of the dz2 wavefunction. 



And then we can look at some of these other ones. You will see that 
some of the d-orbitals come as combinations of real and imaginary 
functions that are the solutions to the differential form of the 
Schrödinger equation. And then we take linear combinations of these 
to get real forms so that we can get plots that we can look at. And 
let's see if we can get dz2 here. 

There it is. There is a picture of dz2. And you see, if you are using this 
Maple worksheet, that you can actually rotate that around and animate 
it a little bit. You see that we have this torus that is in the xy plane. 
And you have the two large lobes that extend up along plus and minus 
z. And so I am going to encourage you to go ahead and look at that 
worksheet, which will be available from our website. 

Go ahead and look at some of the functions. And if some of you are 
interested in higher orbitals, the f-orbitals are also available in this 
worksheet. So you can visualize the f-orbitals that are important for 
understanding the chemistry of elements like, for example, uranium 
which is a little bit beyond the scope of 5.112. Now let's switch to the 
document camera. 

And, if you could, I would like you to make this part big. This is a table 
in your textbook that has the angular part of the wavefunctions for 
various hydrogen-like orbitals. And this is the part that I am most 
interested in here. If you could just focus in on the d-orbitals over 
here. 

When I was talking about the dz2 orbital a moment ago, I was 
focusing on this term here, this cosine squared theta minus one 
term. And here are the other d-orbitals. These are the descriptors for 
the d-orbitals, zy, yz, xz, x2 minus y2 and z2. And I will need to refer 
to this in a moment, so we will leave this up. 

The reason why I have this arrow written into my book here is because 
these are backwards in the text. This one is actually x2 minus y2 and 
this one is actually the xy orbital. We figured that out last year when 
we were doing this lecture. And so your book isn't always right. You 
should make sure you check. The same is certainly true of your 
instructor, but we will try not to mislead you. And so now here is the 
approach that we are going to take. 

Let's say that we have our coordinate system, and we want to know 
how to evaluate one of these d-orbital wavefunctions for a particular 
point in space. Actually, we are going to want to evaluate the square 



of the wavefunction. And so we are going to make use of a Cartesian 
coordinate system. And we are going to express things in terms of 
polar coordinates. 

Here is a sphere projected onto our Cartesian coordinate system. And 
some of you will be very familiar with this. We are going to say if you 
are at a point here in space then we can describe that point in space 
by a set of variables which will be R, theta and phi. 

And here is our angle theta. And if we drop down to a perpendicular 
on the xy plane from our point then we are going to define phi as 
being from the x-axis and going over in the direction of y. 

And so, when you look at the d-orbital wavefunctions, you see that 
they are all written here in terms of just theta and phi. And not in 
terms of R, which is this distance here from the nucleus, from the 
center of this metal ion that we are talking about. This would be the R. 

And what we are going to do is if this point on the surface of our 
sphere represents one of our ligand atoms, so think back to that 
complex we were describing a few moments ago, cobalt with three 
ammonia ligands and three chloride ligands, we are going to 
approximate each of those six ligands by a point on the surface of our 
sphere. And then we are going to say if there is a metal at the center, 
that cobalt ion in particular, what is the probability of finding a d-
electron where that ligand atom is? 

And, in order to do that, we are going to need to be able to evaluate 
the wavefunction. And we are making the assumption, for simplicity, 
that this is a perfect sphere, and also that our coordination geometry 
is a perfect octahedron. And so we are not going to consider R, 
because R is going to be the same everywhere. It is just a perfect 
sphere with one value of R, no matter which ligand position we are 
looking at. 

And so that means we can focus in just on these which are the angular 
part of the wavefunction for the molecule in question. And so let's see 
what this means with respect to dz2. 

The probability of finding an electron at some point in space in a 
particular atomic orbital is proportional to the square of that atomic 
orbital at that point in space. 



That is our probability density. And we encountered that very early in 
the semester. Now we are going to make use of that to make a plot. 
We are going to plot this probability density of finding electron in dz2 
as a function of theta. Why can I do that ignoring phi? Well, that is 
because if you look at dz2 there is no phi in that equation. 

Why is that? That is because dz2 is cylindrically symmetric about z. 
And look at how we defined phi. It is as you go in the xy plane around 
starting from x. Because of the sigma symmetry of dz2 with respect to 
z there is no phi dependence of this wavefunction. And that should 
appear here in the angular form of the description of the dz2 orbital. 

But we do know that dz2 does depend on theta, because theta starts 
out somewhere here along, let's say initially theta equals zero would 
be right on the positive z-axis. And then, as we keep a constant R and 
we sweep down here toward the xy plane, the dz2 probability density 
is dropping off. 

And then at some point, when we get to the node here, and we are 
going to be interested in that, it goes to zero, because that is what 
happens on nodes, as we continue down toward the xy plane past that 
node it is going to be nonzero again and rise up as we approach this 
smaller torus in the xy plane. Smaller that is than the big lobes that 
extend up along z and down along minus z. Let's represent that 
graphically. 

Coming down in theta from theta equals zero to some value here, we 
are going to be interested in just what that value is. And then rising 
up again to theta is equal to pi over two. Do you see that? This is 
another way of displaying this property. This is at constant R --

-- and varying theta. 

First of all, how can we find out at what value theta goes to zero? Well, 
we look up here at the function form of the dz2. We get nodal 
properties of dz2. 

We can pretty quickly see that in each of these we have a factor 
leading out in front, which is a normalization factor that assures us 
that the sum integrated over all space of this wavefunction will come 
out to be one. 

If there is an electron in that orbital somewhere, the probability of 
finding that electron somewhere in space will be one. We have these 



normalizing constants out in front that allow for that and ensure that 
that is the case. But where we actually find the angular dependence is 
in that second term. Here it is three cosine squared theta minus one. 

And what we want to do is say when does this function go to zero? 
Because when that goes to zero we will have this angle here. If we 
say let this equal zero, we are looking for the value of the angle theta 
which corresponds to the node of the dz2 orbital. 

Remember, we mentioned this last time, because of this cylindrical 
symmetry of the dz2 orbital this really is a conical nodal surface that is 
above and below the plane here. If you are anywhere on that cone, 
either in plus or minus z, the value of that dz2 orbital is zero. And so 
we are setting it equal to zero to find the angle theta. 

And we can rearrange this and say that cosine squared theta is equal 
to one over three. And, if we go ahead and solve that, this comes out 
to the arccosine of root three over three. And the other possibility that 
satisfies that relation is pi minus the arccosine of root three over 
three. 

And so what that means is that this relation here gives us the angle for 
that cone in the plus z axis. And then this one down here, pi minus 
arch cosine root three over three, gives us the angle for that cone 
down in the minus z axis. And what is this? This is, in degrees, 
something like 54.476 dot dot dot degrees approximately. That is just 
how far down you are from the z-axis when you hit that nodal surface 
of z. 

And that number, you are going to see, is kind of a magical number in 
chemistry. And it will hearken back to some of the things that we have 
been taking about recently. And, in order to get to that point, I am 
going to need to now talk about our ligands again with respect to dz2. 

We are considering now an octahedral metal complex. 

This is the type of Werner-esque complex that we talked about last 
time. You are going to see that we are going to have ligands. We are 
not really specifying them. We are numbering them and locating them 
at positions one, two, three, four, five and six relative to our metal 
center at the middle. And what you might begin to realize is that in 
order to find out what our energy-level diagram will be that refers only 
to the five d-orbitals on the cobalt center, or whatever metal center is 



at the middle of this ion, is evaluate the square of the wavefunction at 
each of these ligand positions. 

And we are assuming that all the ligands are equivalent. If you think 
of the ligand as an electron or as a point charge in space then you can 
imagine that if we have an electron in dz2 up here that it is going to 
interact strongly and very repulsively with a point charge that would 
be located at position one. 

Whereas, if we instead had a point charge located at that theta angle 
of 54 point whatever over there that we solved for then, since that is 
on the node of dz2, that would be the least possible repulsive 
interaction that you could get between an electron and an electron in 
dz2 because it is on the node. And so what we would like to do is to 
go ahead and solve for some of these things. Essentially, what we 
seek --

-- is an energy-level diagram. 

And so let's write this up here. This is five over 16pi. This is dz2 that I 
am writing up. Three cosine squared theta minus one. And because we 
are talking about the probability density of finding an electron at a 
particular point in space, which will mean a particular theta value in 
our case for dz2, we are talking about that wavefunction squared. 

What we need to do is evaluate it. We have already evaluated it 
where the node is, but we would like to evaluate it at position one. 
Because we have a ligand at position one and we need to know what 
the relative response will be of dz2 to a ligand along position one 
versus the other five positions. 

We can say something about that by symmetry already. And so we 
are going to find out that the value that you get for evaluating dz2 at 
position one is the same as you would get for evaluating it at position 
six. And that is because the big lobes of dz2 are along plus and minus 
z. That is where ligands one and six are. And then, because the torus 
is also cylindrically symmetric, two, three, four and five have the same 
value when you evaluate dz2 at those positions. 

But that value is smaller than along z, as illustrated by this graph over 
here. But we just want to know how much smaller. 

And so this is position one. We get a value of five-quarters. And down 
here, position two, a value of five-sixteenths. I am leaving off a factor 



of pi. Please don't be concerned by that. But these are the relative 
values that you get when you evaluate this function at ligand positions 
one and two, which is all we need to do because of the symmetry of 
this. Because that value for position one is also true for position six. 

So we have positions one and six. And then this is also three, four and 
five. By doing two quick evaluations at two different theta positions, 
position one, of course, theta is equal to zero up here. And we 
evaluate that squared function for theta equals zero. 

And we get five-fourths pi, but I am leaving off the pi. And down here, 
at position two, we evaluate this for theta equals pi over two. Because 
two, three, four and five are all in the xy plane at 90 degrees to z. So 
the value of theta anywhere for those four ligands would be pi over 
two. You evaluate this function for pi over two and you will get five-
sixteenths pi. 

And I have just left off the pi. That is useful. Let's take this one up to 
the top. 

Here we have done one of the d-orbitals. This is dz2 for all six ligand 
positions. 

Now let's do dx2 minus y2 for all six ligand positions. 

First of all, dx2 minus y2 has a pretty interesting relationship with 
ligands one and six. What is that relationship? 

Zero. Because x2 minus y2 has two nodal surfaces that intersect along 
the z-axis. And so those ligands, four and six, lie on a nodal surface. 

And so we know that that is going to be equal to zero. If, however, 
we go ahead and evaluate the square of dx2 minus y2, let me just 
write it up. And I have to switch it since they are wrong in the book. 
15 over 16pi square root sine squared theta cosine to phi. 

We have that. Now, just as we do, we are converting an orbital 
angular property into a probability density by squaring it. This is what 
we normally do. When you see pictures of orbitals, they are 
representing the square of the wavefunction in space. We need to 
evaluate this as a function of theta and phi in order to find out what --

The first two, one and six, we did by inspection, but what about 
positions two, three, four and five? In the case of those four, you can 



see that where they lie in the xy plane with respect to the x2 minus y2 
orbital is all identical to each other by symmetry. Because x2 minus 
y2 has lobes that extend along x and plus x and y and minus y. And 
that is where all these ligands lie, at positions two, three, four and 
five. 

We know that theta is equal to what? It is going to be pi over 
two. And phi, of course, can be zero pi over two pi, and three pi over 
two for any of those positions. And what we will find is that this 
evaluates --

For any of those let's just use phi equals zero. This evaluates as 15 
over 16pi. And I am dropping the pi. Now we have dz2 and dx2 minus 
y2 evaluated for all six ligand positions. And then let's make a table of 
this. 

Z2. X2 minus y2. Let's do xz, yz and xy. And here are our ligand 
positions. And in the table here we are going to put what these 
relative evaluated squared wavefunctions are. And the biggest one of 
all is this one here that we got at position one for dz2, which is five-
fourths. 

I am going to divide everybody through by five-fourths so that I can 
make our biggest value equal to one for simplicity here. And then, 
when we do that, you are going to see that two gives a value of a 
quarter. That is position two down in the torus. Three down in the 
torus is one-quarter relative to that one. Four is one-quarter. Five is 
one-quarter. And six down in minus z is one. So we have evaluated 
the dz2 orbital squared at the ligand positions one through six. 

And these are the relative values that we got for the probability of 
finding an electron at that point in space given a constant value of 
R. And x2 minus y2, we got for positions one and six zero, we just 
said that. And then, on the same scale here, we get three-quarter, 
three-quarter, three-quarter and three-quarter. 

And then for xz, yz and xy, we have gone through these two steps to 
do z2 and x2 minus y2 explicitly. Now we have to look at where 
ligands one through six are relative to the nodes of xz or yz and xy. 

And what we will find is that, in each case, these ligands lie on nodal 
surfaces of xz, yz and xy. This is zero, zero, zero, zero, zero, zero, 
zero and so on. OK? 



All the ligands, one through six, lie on nodal planes of xz, yz and xy. 
Only four the ligands interact with x2 minus x2, ligands two through 
five, because those are the ones that lie in the xy plane. And they 
interact strongly, this relative value of three-quarters, but not as 
strongly as the two ligands in positions one and six interact with the 
big lobes of dz2. 

And then also ligands two through five, which lie in the xy plane, 
interact with the torus of dz2, but to a much smaller extent because 
the torus does not have as great a radial extent. And these ligands 
are all at the same radius out from the metal center. And so what this 
corresponds to is now an energy-level diagram as follows. And this is 
for an octahedral complex --

-- where we have relative energy units of zero, one, two and 
three. And what we have to do is say that the amount an electron in 
dz2 would be repelled simultaneously by electrons in positions one 
through six would be the sum of these values. 

And so we add that up and get, in fact for dz2, up here a three. And, 
interestingly, for dx2 minus y2, if we take a sum of the four 
interactions that we found that are non-zero, we also get a three for 
dx2 minus y2. So then the net of all their interactions is the same for 
x2 minus y2 and z2. 

And then down here, we found that these three orbitals, xz, yz and xy, 
where the ligands at positions one through six lie on their nodal 
surfaces, lie right on their nodal surfaces. And so the number 
evaluates to zero. And so a wavefunction squared will evaluate to zero 
any time you are looking at a position that is on one of its nodal 
surfaces. It evaluates to zero. And so we have dxz, dyz and dxy. 

And then a diagram like this, which is a d-orbital splitting diagram --

--is associated with a couple of different parameters. One is down 
here we have a triply degenerate energy level. 

Previously, we had only seen doubly degenerate energy levels. Now 
we have a triply degenerate on composed of xz, yz and xy. And that 
level we are going to be calling t2g. And then, up here, we have a 
doubly degenerate level that will get the label eg. And then, whatever 
the value of the splitting of these two energy levels, one triply and one 
doubly degenerate, we are going to give that the label delta O for 
octahedral. 



And at the beginning of next hour, I will say more about tables like 
this. And I will show you how you can actually figure out d-orbital 
splitting diagrams for other coordination geometries and how they 
compare for a couple of the most popular coordination geometries. 


